4,331 research outputs found
Mechanism of the photovoltaic effect in 2-6 compounds Progress report, 1 Apr. - 30 Sep. 1967
Mechanism for photovoltaic effects in heterojunctions in group 2 to 6 compounds with metallic or quasimetallic barrier layer
Mechanism of the photovoltaic effect in 2-6 compounds Progress report, 1 Oct. 1967 - 31 Mar. 1968
Mechanisms of photovoltaic effects in heterojunctions in group 2 to 6 compounds with metallic or quasimetallic barrier layer
Unsupervised machine learning for detection of phase transitions in off-lattice systems II. Applications
We outline how principal component analysis (PCA) can be applied to particle
configuration data to detect a variety of phase transitions in off-lattice
systems, both in and out of equilibrium. Specifically, we discuss its
application to study 1) the nonequilibrium random organization (RandOrg) model
that exhibits a phase transition from quiescent to steady-state behavior as a
function of density, 2) orientationally and positionally driven equilibrium
phase transitions for hard ellipses, and 3) compositionally driven demixing
transitions in the non-additive binary Widom-Rowlinson mixture
Mechanism of the photovoltaic effects in 2-4 compounds Progress report, 1 Apr. - 30 Sep. 1968
Current gain mechanism in copper sulfide-cadmium sulfide diode upon photoexcitation in presence of reverse bia
On bare masses in time-symmetric initial-value solutions for two black holes
The Brill-Lindquist time-symmetric initial-value solution for two uncharged
black holes is rederived using the Hamiltonian constraint equation with Dirac
delta distributions as a source for the binary black-hole field. The bare
masses of the Brill-Lindquist black holes are introduced in a way which is
applied, after straightforward modification, to the Misner-Linquist binary
black-hole solution.Comment: LaTeX, 4 page
Excision boundary conditions for black hole initial data
We define and extensively test a set of boundary conditions that can be
applied at black hole excision surfaces when the Hamiltonian and momentum
constraints of general relativity are solved within the conformal thin-sandwich
formalism. These boundary conditions have been designed to result in black
holes that are in quasiequilibrium and are completely general in the sense that
they can be applied with any conformal three-geometry and slicing condition.
Furthermore, we show that they retain precisely the freedom to specify an
arbitrary spin on each black hole. Interestingly, we have been unable to find a
boundary condition on the lapse that can be derived from a quasiequilibrium
condition. Rather, we find evidence that the lapse boundary condition is part
of the initial temporal gauge choice. To test these boundary conditions, we
have extensively explored the case of a single black hole and the case of a
binary system of equal-mass black holes, including the computation of
quasi-circular orbits and the determination of the inner-most stable circular
orbit. Our tests show that the boundary conditions work well.Comment: 23 pages, 23 figures, revtex4, corrected typos, added reference,
minor content changes including additional post-Newtonian comparison. Version
accepted by PR
The binary black-hole problem at the third post-Newtonian approximation in the orbital motion: Static part
Post-Newtonian expansions of the Brill-Lindquist and Misner-Lindquist
solutions of the time-symmetric two-black-hole initial value problem are
derived. The static Hamiltonians related to the expanded solutions, after
identifying the bare masses in both solutions, are found to differ from each
other at the third post-Newtonian approximation. By shifting the position
variables of the black holes the post-Newtonian expansions of the three metrics
can be made to coincide up to the fifth post-Newtonian order resulting in
identical static Hamiltonians up the third post-Newtonian approximation. The
calculations shed light on previously performed binary point-mass calculations
at the third post-Newtonian approximation.Comment: LaTeX, 9 pages, to be submitted to Physical Review
Inference with interference between units in an fMRI experiment of motor inhibition
An experimental unit is an opportunity to randomly apply or withhold a
treatment. There is interference between units if the application of the
treatment to one unit may also affect other units. In cognitive neuroscience, a
common form of experiment presents a sequence of stimuli or requests for
cognitive activity at random to each experimental subject and measures
biological aspects of brain activity that follow these requests. Each subject
is then many experimental units, and interference between units within an
experimental subject is likely, in part because the stimuli follow one another
quickly and in part because human subjects learn or become experienced or
primed or bored as the experiment proceeds. We use a recent fMRI experiment
concerned with the inhibition of motor activity to illustrate and further
develop recently proposed methodology for inference in the presence of
interference. A simulation evaluates the power of competing procedures.Comment: Published by Journal of the American Statistical Association at
http://www.tandfonline.com/doi/full/10.1080/01621459.2012.655954 . R package
cin (Causal Inference for Neuroscience) implementing the proposed method is
freely available on CRAN at https://CRAN.R-project.org/package=ci
Stuffed Black Holes
Initial data corresponding to spacetimes containing black holes are
considered in the time symmetric case. The solutions are obtained by matching
across the apparent horizon different, conformally flat, spatial metrics. The
exterior metric is the vacuum solution obtained by the well known conformal
imaging method. The interior metric for every black hole is regular everywhere
and corresponds to a positive energy density. The resulting matched solutions
cover then the whole initial (Cauchy) hypersurface, without any singularity,
and can be useful for numerical applications. The simpler cases of one black
hole (Schwarzschild data) or two identical black holes (Misner data) are
explicitly solved. A procedure for extending this construction to the multiple
black hole case is also given, and it is shown to work for all time symmetric
vacuum solutions obtained by the conformal imaging method. The numerical
evolution of one such 'stuffed' black hole is compared with that of a pure
vacuum or 'plain' black hole in the spherically symmetric case.Comment: 12 pages, Latex, 4 postscript figures, corrected some typos, new
section about physical interpretatio
Dissipative fluids out of hydrostatic equilibrium
In the context of the M\"{u}ller-Israel-Stewart second order phenomenological
theory for dissipative fluids, we analyze the effects of thermal conduction and
viscosity in a relativistic fluid, just after its departure from hydrostatic
equilibrium, on a time scale of the order of relaxation times. Stability and
causality conditions are contrasted with conditions for which the ''effective
inertial mass'' vanishes.Comment: 21 pages, 1 postscript figure (LaTex 2.09 and epsfig.sty required)
Submitted to Classical and Quantum Gravit
- …
