

View

Online


Export
Citation

CrossMark

RESEARCH ARTICLE |  NOVEMBER 20 2018

Unsupervised machine learning for detection of phase
transitions in off-lattice systems. II. Applications 
R. B. Jadrich; B. A. Lindquist; W. D. Piñeros; D. Banerjee; T. M. Truskett 

J. Chem. Phys. 149, 194110 (2018)
https://doi.org/10.1063/1.5049850

 CHORUS

 18 D
ecem

ber 2023 14:25:29

https://pubs.aip.org/aip/jcp/article/149/19/194110/196477/Unsupervised-machine-learning-for-detection-of
https://pubs.aip.org/aip/jcp/article/149/19/194110/196477/Unsupervised-machine-learning-for-detection-of?pdfCoverIconEvent=cite
https://pubs.aip.org/aip/jcp/article/149/19/194110/196477/Unsupervised-machine-learning-for-detection-of?pdfCoverIconEvent=crossmark
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
https://orcid.org/0000-0002-6607-6468
javascript:;
https://doi.org/10.1063/1.5049850
https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/1.5049850/15549786/194110_1_accepted_manuscript.pdf
https://servedbyadbutler.com/redirect.spark?MID=176720&plid=2264412&setID=592934&channelID=0&CID=831204&banID=521546340&PID=0&textadID=0&tc=1&scheduleID=2185085&adSize=1640x440&data_keys=%7B%22%22%3A%22%22%7D&matches=%5B%22inurl%3A%5C%2Fjcp%22%5D&mt=1702909529178341&spr=1&referrer=http%3A%2F%2Fpubs.aip.org%2Faip%2Fjcp%2Farticle-pdf%2Fdoi%2F10.1063%2F1.5049850%2F15549785%2F194110_1_online.pdf&hc=bbd311dadaa9b0f57d69a7cff5b241c9217aded3&location=


THE JOURNAL OF CHEMICAL PHYSICS 149, 194110 (2018)

Unsupervised machine learning for detection of phase transitions
in off-lattice systems. II. Applications
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We outline how principal component analysis can be applied to particle configuration data to detect a
variety of phase transitions in off-lattice systems, both in and out of equilibrium. Specifically, we dis-
cuss its application to study (1) the nonequilibrium random organization (RandOrg) model that exhibits
a phase transition from quiescent to steady-state behavior as a function of density, (2) orientation-
ally and positionally driven equilibrium phase transitions for hard ellipses, and (3) a compositionally
driven demixing transition in the non-additive binary Widom-Rowlinson mixture. Published by AIP
Publishing. https://doi.org/10.1063/1.5049850

I. INTRODUCTION

Principal component analysis (PCA) is a simple and
widely used unsupervised machine learning tool for dimen-
sionality reduction.1–3 Perhaps the most common application
of PCA is for the lossy compression of images. One popu-
lar demonstration is the analysis of facial images, leading to
the aptly named “eigenfaces” that capture collective attributes
of facial structure.1,2 Only a subset of the eigenfaces—much
fewer than the naı̈ve dimensionality of the problem—are
required to recover the salient aspects of facial images by
simple linear combination. Another routine use is in natural
language processing, where PCA is employed to shrink the
data dimensionality down from the large number of words
appearing in a data set or in a dictionary.1,2 Use of the resul-
tant lower dimensional representation greatly improves the
development of predictive models to classify text documents.

The combined power and simplicity of PCA has made
it a popular tool in the biological and physical sciences as
well. For example, DNA microarray data are routinely treated
with PCA to reduce the high dimensionality of the problem in
order to identify unique gene expression states across various
experimental conditions.2,4 Furthermore, PCA is commonly
leveraged to extract dominant collective modes in simulations
of proteins, referred to as “Essential Dynamics” in that field.5,6

More recently, various spin models from statistical physics
have been investigated via PCA and other machine learning
methods.7–14 These studies have demonstrated the ability of
machine learning tools to detect and quantify phase transi-
tions by the autonomous construction of an order parameter
(OP).

The aforementioned work on phase transitions in spin
models served as motivation for this two-part series of papers.
In the first manuscript (henceforth referred to as Paper I52),

a)Electronic mail: truskett@che.utexas.edu

we developed guidelines for the utilization of PCA1–3 to detect
phase transitions in off-lattice, particle-based systems. We also
demonstrated that PCA can readily identify the freezing tran-
sitions in hard disks and hard spheres, as well as liquid-gas
phase separation in a binary mixture of patchy particles with
complementary attractions. In developing and evaluating this
approach, we initially focused on phase transitions that were
equilibrium in nature and could be identified on the basis of
features reflecting the positional degrees of freedom of the
particles.

Here, we seek to generalize the formalism developed
in Paper I52 to assess its utility for detecting phase tran-
sitions in a broader class of systems. Examples include
equilibrium systems with (1) anisotropic particles leading
to orientational as well as positional ordering15,16 and (2)
compositional degrees of freedom that can induce demix-
ing.17 We also address active or driven matter, which exhibits
phase transitions whose detection and characterization cannot
generally be facilitated based on arguments from equilibrium
statistical mechanics.18–27

We propose several numerical encoding schemes (i.e.,
feature vector representations) for data describing particle con-
figurations in these systems to detect their phase transitions
with PCA. We find that prior knowledge of the phase transition
is not required to construct a useful feature vector; considera-
tion of the properties of the model system at hand is sufficient.
However, we also show that by performing PCA on several
choices for the feature vector, one can gain physical insights
into the nature of the phase transition.

The balance of the manuscript is organized as fol-
lows. In Sec. II, considerations for constructing features
for the detection of phase transitions in off-lattice sys-
tems using PCA are presented. The model systems ana-
lyzed in this work and the corresponding simulation details
for each model are also provided. Section III is divided
into three subsections, each dedicated to a different model
system. The first, Sec. III A, describes a study of the random
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organization model, which exhibits a nonequilibrium phase
transition between a quiescent state and a dynamically evolv-
ing steady state as a function of increasing density.28–31

Section III B addresses the fluid-nematic (orientationally
driven) and the nematic-solid (positionally driven) phase tran-
sitions that occur upon densification of hard ellipses.32–35

Finally, in Sec. III C, compositional demixing in the Widom-
Rowlinson (WR) model—a binary mixture where unlike par-
ticles interact via excluded volume effects but like particles
are noninteracting36–38—is explored. Concluding remarks are
presented in Sec. IV.

II. METHODS
A. Feature construction

Features (f i) are scalar quantities that inform a machine
learning algorithm about some aspect of the system being
studied.1,2 Here, we denote a general vector of m features as

f ≡
[
f1, f2, . . . , fm

]T
, (1)

where T indicates a transpose. Feature vectors provide a
numerical encoding for the separate realizations (or measure-
ments) contained in the data set (D).

When possible, features should reflect any known con-
straints; for physics problems, these include invariance to
translation and rotation.39–42 Such constraints can be easily
encoded via the use of internal coordinates (e.g., interparticle
distances or relative angular orientations) as features. Here, we
compute pairwise quantities g(α)

β that are in reference to a probe
particle (α) and a corresponding particle in its environment
(β). A feature vector built from information considering nP

probe particles (each with nNN corresponding environmental
particles) can be represented as

f =
[
gT

1 , gT
2 , . . . , gT

nP

]T
,

gT
α ≡

[
g(α)

1 , g(α)
2 , . . . , g(α)

nNN

]
,

(2)

where the full vector of vectors gT
α corresponding to each probe

particle α is implicitly flattened to form one contiguous feature
vector (block matrix notation).

Within the above mathematical framework, there is no
unique choice for the selection of either the probe particles or
the neighboring particles that define their environment. Once
a collection of probe and corresponding environment particles
are chosen, we also must specify how the resultant pairwise
quantities (g(α)

β ) are assigned to the α and β indices in Eq. (2).
So we do not have to compute properties with respect to every
particle in the simulation box, and we select nP probe particles
at random. For the corresponding environmental particles, we
use physical intuition as a guide by assuming that the distance
between the probe particle and a given environmental particle
r(α)
β will influence the manner in which the associated feature

g(α)
β reports on a given phase transition. As a result, we use

a distance-based criterion to determine which particles com-
prise the environment for a given probe (e.g., the first twenty
nearest neighbors or every tenth nearest neighbor), hence our
use of nNN to denote the number of environmental particles.

Similarly, we assign the index β on the basis of interparticle
distance so that

r(α)
1 ≤ r(α)

2 ≤ · · · ≤ r(α)
nNN . (3)

The assignment of a probe particle to a given α is less intu-
itive and could be model-dependent; however, random assign-
ment is always a possibility, and, as we discuss below, the
results obtained from that initial assignment can in some cases
help identify a superior assignment scheme for the probe
particles.

In principle, nP could be as large as the number of particles
in the simulation, N, and nNN could have a maximum value
of N − 1. Since the total feature vector size [in relation to
Eq. (1)] is m = nP × nNN, the preceding choices would yield a
feature vector of length N(N − 1). For most systems of interest,
PCA for feature vectors of this size would be computationally
infeasible. Therefore, practical implementation of PCA using
particle-based coordinate data requires sensible choices for nP

and nNN that we describe in Subsections II B 1–II B 3.
Finally, we refer to features where g(α)

β are physically

motivated quantities as “intuited” features (f I). In Paper I,52

we showed that f I do not necessarily approximate white noise
in the disordered reference state (here, the ideal gas) limit
and therefore may possess correlations that could obscure the
detection of a phase transition via PCA. Arriving at corrected
features (f C) that are linearly decorrelated when applied to an
ideal gas reference data set (D0) is accomplished by deriv-
ing a PCA whitening transformation43 (f I→ f C) that satisfies
〈f Cf T

C〉D0 = I, where I is the unit matrix and 〈. . . 〉D0 is an
average over the reference data.

B. Models

We provide a brief description of each model examined
in this work as well as the relevant phase transition(s) below.
We then specify the form of the associated feature vectors
within the framework provided by Eq. (2). Finally, we describe
the simulation protocols used to generate the configurations
on which the PCA is performed. Throughout, N denotes the
number of particles in a two-dimensional (2D) periodically
replicated simulation cell of area A, ρ = N /A is the num-
ber density, and η = ρπσ2/4 is the packing fraction. For
the remainder of the paper, we set σ = 1, implicitly render-
ing all length and volume units dimensionless with respect
to σ.

1. Random organization model

In one variant of the Random Organization (RandOrg)
model, a circular particle of diameter σ is defined as active
if it overlaps with any other particle.30,31 For a given config-
uration, all active particles are simultaneously given random
displacements; all other particle positions are unaltered. Par-
ticle positions are initialized at random, from which the above
procedure is repeated until either (1) a so-called absorbing
state is reached where no particle overlaps are present (lower
densities) or (2) a steady-state is reached where the fraction of
active particles fluctuates about some non-zero value (higher
densities).
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Given that the RandOrg model comprises identical, radi-
ally symmetric particles, features that explicitly encode posi-
tional packing correlations around tagged particles are an obvi-
ous first choice to try. Specifically, we utilize mean subtracted
interparticle distances as our features,

g(α)
β = r(α)

β − 〈r
(α)
β 〉D. (4)

Furthermore, while the model is technically single-component
to the extent that there are no immutable labels associated
with the particles, multiple particle types (active and inactive)
are created on-the-fly due to the dynamics prescribed by the
model. To capture emergent inhomogeneity with respect to
the particle environment, it is critical to utilize multiple probe
particles as prescribed by Eq. (2). In the present work, we use
a fixed feature length of m = nP × nNN = 400 and examine the
effects of co-varying nNN and nP.

Within the above approach, there is still the question of
how to assign the probe particles to specific values of α in
Eq. (2). One valid, though perhaps not particularly informative,
choice is to randomly order the probe particles such that α
assignment does not encode any information. In Sec. III A, we
demonstrate how performing PCA with this choice produces
results that suggest a more informative sorting scheme, where
probe particles are assigned to the index α on the basis of their
first NN distance, i.e., r(1)

1 ≤ r(2)
1 ≤ · · · ≤ r(nP)

1 .
We note two additional technical points regarding PCA

for the RandOrg model. First, as we increase nP, the magni-
tude of the OP grows in a nonlinear fashion. We can collapse
OPs onto the same scale by dividing by the square root of the
explained variance of their dimension, a procedure equivalent
to data “whitening” discussed in Paper I52 in the context of cor-
recting the physics-motivated features. We also find that OPs
obtained from both dimensional (preserving units of distance)
and nondimensionalized features (dividing raw distances by
ρ−1/D, where D is the dimension) accurately detect the phase
transition of the RandOrg model. However, as we demon-
strate, the PCA-derived OP using the former convention shows
behavior that is more strikingly reminiscent of the classical OP
for this system.

To generate the configuration data required to construct
the above features, we performed 2D simulations in a square
box with N = 1000 particles and employed a maximum dis-
placement of 0.25σ in both the x and y directions for the active
particles. The length of the simulations varied with proximity
to the critical point characteristic of the transition between
an absorbing and a steady state. At densities below the criti-
cal point, an individual simulation ended when the absorbing
state is reached; however, critical slowing down impacts the
simulation length required to achieve that state.29,30 We used
a maximum of 105 simulation steps for densities below the
critical point. For higher densities, the fraction of active parti-
cles decreased from the initial random state before fluctuating
about a steady-state. The number of simulation steps was cho-
sen to be at least twice as long as the initial relaxation time
scale, ranging from 103 steps (at the highest densities) to 105

steps (just past the critical point). We performed 103 separate
simulations, using only the last frame from the simulation in
the PCA. Values for ρ ranging from 0.38 to 0.63 were simulated

in increments of 0.005. From the simulation data, we computed
25 feature vectors from each simulation snapshot, where the
probe particles were selected at random. Within a single feature
vector, probe particles are selected without replacement; how-
ever, a particular probe particle can appear in multiple feature
vectors.

2. Hard ellipses

Densification of hard ellipses bears similarity to the freez-
ing of hard disks studied in Paper I52 but with added com-
plexity derived from particle-shape anisotropy. In addition to
ordering on the center-of-mass positional level, quasi-long
ranged orientational ordering is possible, yielding the so-
called nematic phase.15,16 Two obvious pairwise properties
to compute from the configurational data of hard ellipses are
the center-of-mass distances and the relative orientations of
the ellipses. With respect to the former, we use the posi-
tional features with a single probe particle as employed in
Paper I52 for hard disks and spheres. This form is equiv-
alent to the feature vector defined by Eqs. (2)–(4) for the
case where nP = 1 and nNN = N − 1, where N is the num-
ber of particles. Subsequently, the size of the feature vec-
tor is reduced by only including every 10th NN distance
after the first feature in the final feature vector. The pair-
wise distances are normalized with respect to the mean inter-
particle spacing l ≡ ρ−1/D, where ρ is the number density
and D is the spatial dimensionality, to remove trivial density
scaling.

For the latter case of relative orientations, we still employ
one probe and index its environmental particles on the basis of
NN sorting [Eqs. (2) and (3)]; however, we use a measure of
relative pair orientations in place of pair distances in the feature
vector. Defining δθ(α)

β as the angular difference between the
probe and environmental particles assigned to indices α and
β, respectively, we employ features of the form

g(α)
β =

�� cos
(
δθ(α)
β

) �� −
〈�� cos

(
δθ(α)
β

) ��
〉
D. (5)

That is, g(1)
1 quantifies the relative orientation of the single

probe particle with its closest NN ellipse. From the sorted list
defined by the combination of Eqs. (2), (3), and (5), only every
10th NN is included in the feature vector, as was performed
for the positional features above.

The feature vectors used as input to PCA were collected
from Monte Carlo simulations of hard ellipses carried out at
a constant particle number and volume using the HOOMD-
blue software package.44–46 The box shape was chosen to
approximate a square by an appropriate distribution of trian-
gular lattice cells with an aspect ratio of

√
3κ, where κ = b/a

is the ratio of the semi-major (b) and semi-minor (a) ellip-
tical axes, respectively. (Here, we set the lengthscale as 2a
= 1.) Specifically, given the number of cells in the y direc-
tion, ny, the number of cells in the x direction is chosen as
nx = round(

√
3κ). For ellipses with κ = {3, 4, 6, 9}, we chose

ny = {17, 15, 12, 10} which yielded the total number of parti-
cles N = {2992, 3120, 3000, 3120}, respectively. For each step,
the move type (rotation or translation) was selected at random
with equal probability. The maximum degree of translation and
rotation per move were independently scaled to yield an∼25%
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acceptance rate for efficient phase sampling. Density ranges
were chosen to span the isotropic, nematic, and solid phases.
For ellipses with κ = {3, 4, 6, 9}, we chose η = {0.6–0.9,
0.55–0.9, 0.4–0.9, 0.3–0.9}, respectively. A typical run pro-
ceeded as follows. A system of N hard ellipses was started from
an ideal triangular lattice at maximum packing fraction and
expanded to a target η value. Next, the range of translational
and rotation move sizes was optimized using 50 iterations of
100 steps to achieve the targeted acceptance ratio, where a step
is equal to an HOOMD-blue “time step,” or approximately four
sweeps over all particles. Then, the system was equilibrated
for 6 × 106 steps, and data were collected every 6000 steps
from an additional 6 × 106 step production run. From each
frame, 30 feature vectors were constructed, where the probe
particles were selected without replacement within a given
frame.

3. Widom-Rowlinson model

The Widom-Rowlinson (WR) model36 is composed of a
binary mixture of A and B particles where like pairs (A-A
or B-B) are non-interacting and unlike pairs (A-B) interact
isotropically via a hard-core repulsion with diameter σ. Upon
densification, the WR model compositionally demixes to form
separate A- and B-rich phases. The resulting phase transition
can straightforwardly be used to model compositional demix-
ing; however, by integrating out the coordinates of one of the
species, a model for liquid-gas coexistence can be obtained.
In this work, we study the symmetric WR model where the
number of A and B particles is equal.

The full specification of an individual particle in the WR
model requires knowledge of both its type (A or B) and its
position, yielding two obvious quantities to include in the fea-
ture construction. Instead of directly encoding the particle type
as a categorical variable, we use particle type information to
modify the assignments of the α and β indices. We construct
NN positional features as prescribed by [Eqs. (2)–(4)], but
we only include distances between pairs of A particles in the
feature vector. We use a single probe particle (nP = 1) with
nNN = 1200 nearest neighbors for the environmental descrip-
tors. By neglecting one of the WR components, we construct
features that explicitly leverage both compositional and posi-
tional information. Finally, we normalize the distances in the
same fashion as the ellipse positional features described in
Sec. II B 2.

For the production of the configuration data required to
construct feature vectors for PCA, the HOOMD-Blue hard-
particle Monte Carlo integrator44–46 was used to perform the
simulations of the WR model in a square box for N = 4096
particles in 2D. Equilibrium samples were generated at num-
ber densities spanning both the mixed and ordered phases
as follows. After compressing the final configuration from
simulation at the previous density, the system was equili-
brated for 107 steps, followed by a production run of 107

steps, from which data were collected every 103 steps, for
a total of 104 snapshots per density. A step is equivalent
to a HOOMD-blue “time step” as defined in Sec. II B 2.
Simulations were run from ρ = 0.064 to 3.82 in incre-
ments of 0.064. From each frame, a single feature vector was
constructed.

III. RESULTS AND DISCUSSION

Prior to examining the PCA results for the above mod-
els, we explain the general interpretation of the quantities that
result from PCA below. For the features constructed according
to the protocols described in Sec. II, PCA discovers a set of
orthogonal axes—the principle components (PCs)—that are
constructed in succession so as to maximize the data variance
projected along each new axis. In this work, we monitor the
relative explained variance of the PCs, denoted as λi for the
ith PC; by convention, the PCs are sorted so that λi ≥ λi+1. A
comparatively large value for λ1 indicates that the information
content of the features has been effectively concentrated into
a single dimension: the first PC.

Of particular relevance to interpreting the PCA results
is the projection of the feature vectors along the PCs: the PC
score, denoted pi for the ith PC. Given that the first PC contains
the largest explained variance, we evaluate the use of p1 as an
OP-like quantity to report on the phase transition of interest.47

This strategy amounts to coalescing as much “information”
(i.e., variance) as possible from the high-dimensional feature
vector f C into the scalar p1.

Since each p1 is associated with a single feature vector, we
define two quantities that are averaged over a given state-point
S (here, the state points are densities): P1 ≡ 〈p1〉S and the

associated standard deviation, σ1 ≡

√
〈p2

1〉S − 〈p1〉
2
S. When

P1 and σ1 are plotted as a function of density, phase transi-
tions will generally be indicated by a sigmoid in the former
and a peak in the latter metric. The maximum of σ1 is useful
as an operational definition of the phase transition point when
P1 is slowly varying—as can be the case for very continu-
ous phase transitions. This is not to say that P1 is useless in
such cases though. In fact, if the dimensionality reduction is
successful—as gauged by the presence of dominant principal
components—the behavior of P1 is always revealing of the
transition. σ1 should be viewed as akin to a susceptibility of
the order parameter, which can be useful as a supplemental
metric.

Throughout, P1 is compared to an appropriate classical
OP for the transition under consideration. The utility of the
PCA derived OP is gauged by the quantitative closeness of the
estimated transition points and not by the overall similarity
between the two OPs. For hard disks, in Paper I,52 as well as for
the random organization model in this paper, PCA can yield,
at least very closely, the functional form of the classical OP.
However, such similarity is not required for the PCA to inform
the location of the phase transition. Multiple distinct metrics
may be capable of quantifying any given phase transition. Our
goal in this work is to explore the capability of PCA to develop
a useful order parameter for the transition, not necessarily to
replicate a classical analog.

The final relevant quantities from the PCA calculation
are the PCs themselves—the weights that relate the features
and the PC scores. As described in Sec. II A, the intuited fea-
tures (f I) are transformed in a corrected representation (f C),
the latter of which are input into the PCA calculation. Since
the values comprising f I are straightforward to interpret phys-
ically, we explore the relationship between the PC scores and
f I (instead of f C). As described in Paper I,52 it is possible to
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TABLE I. Common PCA variable definitions.

λi
Relative (fractional) explained variance captured by the ith PC, ranging
between 0 and 1, where larger values are indicative of greater importance.

pi

The ith PC score. Mathematically, this is the projection of a feature vec-
tor along the ith PC. PCs offer a new coordinate system with information
concentrated along the earlier (smaller index) PCs.

Pi
Average of the ith PC score, pi, over data from a state point (S). P1 serves
as the OP-like quantity to report on phase transitions.

σi

Standard deviation of the ith PC score, pi, at a state point (S). This is used
as an effective “susceptibility” to locate the phase transition by identifying
the maximum value.

qi Vector of weights that quantify the relevance of each feature to the ith PC.

write down a linear relationship between the scalar pi and the
vector f I via the following dot product:

pi = qT
i f I, (6)

where qi is the desired vector of weights that map f I to
pi. Examination of these weights reveals which physically
meaningful quantities are particularly relevant to the phase
transition.

In summary, we consider (1) the effectiveness of the
dimensionality reduction via λ1, (2) the low-dimensional (OP-
like) representation of the data via quantities that depend on
p1 (P1 and σ1), and (3) the relative importance of the physical
quantities that comprise f I via the weights qi. For convenience,
we summarize the above notation in Table I.

A. Random organization model

The RandOrg model was developed to understand the
transition from reversible to irreversible dynamics that occurs
upon increasing either the applied periodic shear or the den-
sity of a material.29 In the first incarnation of the RandOrg
model, an initial configuration was sheared and any particles
overlapping with others as a result of deforming the simu-
lation box were defined as active particles. Only the active
particles were given a random displacement after which the
simulation box was restored to its original geometry. At suffi-
ciently low combinations of density and applied shear, a qui-
escent “absorbing” state eventually results, where shear does
not generate further particle overlaps and there are no longer
active particles. However, at greater densities and/or shear
rates, shearing the system will always generate some over-
laps. The reversible-to-irreversible transition reflects a state
where the onset of particle collisions upon shearing prevents
the system from returning to its original state when the shear is
removed.28,29

A modified version of the RandOrg model, where shear is
not included, has also been studied.30,31 Instead, as described
in Sec. II B 1, initial particles are placed at random; active parti-
cles correspond to overlapping particles. This model possesses
the same type of transition from an absorbing state at suffi-
ciently low densities to an evolving steady-state containing a
non-zero number of active particles at higher densities, while
being technically simpler to implement. Figure 1(a) shows the

fraction of active particles f A in this version of the RandOrg
model as a function of number density ρ. Two simulation con-
figurations below (ρ = 0.5) and above (ρ = 0.51) the critical
point are shown in Figs. 1(b) and 1(c), respectively.

Like hard disks, the RandOrg model comprises identical,
radially symmetric particles, for which distance-based features
are a sensible choice. Therefore, we first employed the feature
vector developed in Paper I52 for hard disks—sorted nearest-
neighbor (NN) distances associated with a single probe particle
[Eqs. (2)–(4) where nP = 1]. However, this construction of the
feature vector did not produce a satisfactory OP for either P1

or σ1. Use of a feature vector for which nP = 1 likely fails
because, above the critical point, the system always has two
effective particle types—active and inactive [see Fig. 1(c)].
Therefore, the environment of a single particle is not an accu-
rate representation of the simulation box as a whole at higher
densities.

As described in Sec. II A, distance-based feature vec-
tors can naturally incorporate multiple probe particles (and

FIG. 1. (a) Fraction of active particles, f A, in the RandOrg model as a function
of number density, ρ. [(b) and (c)] Simulation snapshots (b) below (ρ = 0.5)
and (c) above (ρ = 0.51) the critical density. Active particles are shown in
lighter green in panel c.
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their corresponding neighbors). As with the NN distances for
a given probe particle, one must decide how to order the probe
particles inside the feature vector. In the absence of any infor-
mation about the nature of a given phase transition, a first
choice might be to randomly order the probe particles. In Fig. 2,
we show results for the first PC using a feature vector con-
structed from 40 probe particles (nP = 40), each of which is
encoded via its first 10 NN distances (nNN = 10). In princi-
ple, the weights associated with each probe particle should be
identical since there is no physics-based interpretation for their
ordering in the feature vector. Indeed in Fig. 2(c), we find a
repeating pattern for every 10 weights: the first NN distance
(r(α)

1 ) component weight for each probe is large in magnitude.
The relative uniformity of the first NN distance weights, com-
pared to the noisiness in the larger NN distances, indicates that
the r(α)

1 values are informative to the PCA.
The corresponding OP is shown in Fig. 2(a) and bears

striking resemblance to the standard OP shown in Fig. 1(a).
Indeed, by arbitrarily shifting and scaling the PC score, we
find that f A essentially overlaps with the PCA-deduced OP.
It seems that the repeating unit in the component weights is
able to distinguish between overlapping and non-overlapping
particles and therefore can report on the relative amounts of
active and inactive particles at a given value of ρ.

We can use the above component weights to intelligently
devise a better sorting scheme for the probe particles. From
Fig. 2(c), it is clear that r(α)

1 is a highly weighted contribu-
tion to the feature vector; therefore, we performed a separate
PCA calculation with the same values for nP and nNN while

FIG. 2. (a) The PCA-deduced OP P1 (with probe particles sorted randomly
in the feature vector) as a function of number density ρ compared to the
conventional OP (the fraction of active particles, f A) for the RandOrg model.
(b) Comparison of P1 with probe particles sorted randomly (black) versus
according to their first NN distance so that r(α)

1 ≤ r(α+1)
1 (blue). (c) Component

weights, [q1]k , as a function of feature dimension k for the two PC scores
shown in panel (b). (Inset) Standard deviations of f A (σ(f A)) and of p1 or the
PC for an individual feature sorted by the first NN distance, (σ1) as a function
of ρ.

sorting the probe particles so that r(α)
1 ≤ r(α+1)

1 . Because we
have sorted the probe particles on the basis of a physically
meaningful descriptor, the symmetry among probe particles
is broken and the probe particles with the closest NNs (i.e.,
those assigned to lower α) are weighted more heavily than
other probe particles [Fig. 2(c)]. Moreover, the associated OP
is significantly sharper at the phase transition, essentially giv-
ing a binary classification into absorbing states and dynamic
steady states on the basis of the OP [Fig. 2(b)].

The approximate location of the phase transition can be
determined by the lowest density at which f A is non-zero,
which occurs at ρ= 0.505 for the simulation protocol described
in Sec. II B 1. This value coincides with the sudden increase in
P1 from a flat line for the sorted features shown in Fig. 2(b). The
standard deviation in both f A (σfA ) and the p1 associated with
the NN sorted features (σ1), shown in the inset of Fig. 2(c),
both possess an obvious spike at ρ = 0.505, indicating that
the maximum value in σ1 is also an accurate reporter on the
location of the phase change.

With the above sorting scheme in hand, we vary both nP

and nNN while keeping the length of the feature vector fixed
at m = nP × nNN = 400. As nP increases and therefore nNN

decreases, the PCA-deduced OP sharpens into a sigmoidal
curve that separates quiescent absorbing states from diffu-
sive steady-states; see Fig. 3(a). Conversely when nP = 1 (as
was the case for Paper I52), P1 cannot detect the transition.
Correspondingly, when features constructed with more probe
particles are used, the explained variance associated with the
first PC increases dramatically [Fig. 3(b)]. The preceding trend
is monotonic—there is no value to include more than the near-
est interparticle distance per probe particle at constant m, an
indication of the local character of the phase transition in the
RandOrg model.

For the above series of PCA calculations, the first 80 com-
ponent weights are plotted in Fig. 3(c). When nP is small, the

FIG. 3. (a) PCA-deduced OP P1 of the RandOrg model as a function of num-
ber density ρ for different numbers of probe particles nP and corresponding
nearest neighbors nNN, respectively. (b) Corresponding explained variance λi
for the first three PCs and (c) the first 80 PC weights [q1]k .
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components appear to be largely random, but as nP is increased,
the components develop more structuring. For each probe par-
ticle, the component weights associated with r(α)

1 have a much
larger weight than that of the rest of the features, reinforcing
the importance of the first NN distance in the dimensional-
ity reduction. Moreover, the probe particles that have closer
first NNs have greater weights; we can interpret the role of
using multiple probe particles as capturing an accurate mea-
sure of r(1)

1 in a statistical sense, i.e., not all probe particles
are required, but sampling is needed to make sure that suffi-
ciently representative interparticle separations are included in
each feature vector.

While the importance of the first NN distance is intu-
itive given that the RandOrg phase transition is defined by the
presence or absence of particle overlaps, we did not incorpo-
rate knowledge of the transition in constructing the features.
In other words, our results suggest that modifying the feature
vector can be used to infer characteristics of a transition, even
if its nature is unknown at the outset. Specifically, for the Ran-
dOrg model, the importance of the first NN distance revealed
by the PCA implies a transition that is local in character in
real-space, and the necessity of multiple probe particles indi-
cates that multiple distinct particle types or environments are
an important characteristic.

B. Hard ellipses

The freezing transition for hard ellipses differs from that of
hard disks because the former features an intervening nematic
phase between the disordered fluid and the positionally ordered
solid. The nematic phase manifests when the ellipses display
disordered center-of-mass positions but quasi-long range ori-
entational order.32–35 A conventional OP that reports on the
fluid-nematic transition, Pmax

2 , as well as simulation configu-
rations at densities below and above the phase transition, is
shown in Fig. 4 for ellipses with an aspect ratio κ = 4. The
continuous, second-order nature of the fluid-nematic transi-
tion is apparent from the behavior of Pmax

2 , from which the
precise density for the underlying phase transition is not read-
ily apparent. Therefore, one typically monitors the long-range
power-law decay of a pairwise angular correlation function
versus interparticle separation to identify the transition. The
nematic phase transition point is identified when the power
law decay exponent (φ) falls below an approximate value
of 1/4.33,34 As shown in the inset of Fig. 4(a), φ = 1/4 at
η ≈ 0.696, in close agreement with prior identification of the
transition.33,34

To detect the fluid-nematic phase transition via PCA, we
use a feature vector constructed from the relative orientation
of pairs of ellipses that are sorted in ascending order by the dis-
tance between the probe particle and its neighbor, as described
in Sec. II B 2. In Fig. 5, we present the results of PCA using
this orientational feature vector for ellipses with an aspect
ratio κ = 4. As seen by the explained variance λi in Fig. 5(b),
the first PC captures approximately 40% of the data variance,
indicating effective dimensionality reduction. From the com-
ponent weights [q1]k in Fig. 5(a), it is clear that long-range
orientations (larger values of k) are much more important
than the closer neighbor orientations which tend toward
zero.

FIG. 4. Density-driven isotropic fluid to nematic phase transition in a
system of hard ellipses with aspect ratio κ = 4. (a) The packing frac-
tion η dependence of the conventional order parameter for this transition,
Pmax

2 = [〈1/NΣN
i cos(2θi)〉2 + 〈1/NΣN

i sin(2θi)〉2]1/2, where θ i is the angle
between the semi-minor axis of the ith ellipse and the x-axis and N is the num-
ber of ellipses, as per Ref. 35. (Inset) Power law exponent (φ) for the angular
correlations as a function of η around the fluid-nematic transition. The hori-
zontal line indicates that the phase transition occurs when φ = 1/4. Simulation
configurations of (b) the isotropic fluid at η = 0.65 and (c) the nematic phase
at η = 0.75. Ellipses are color coded according to θ i as defined above with
the angular range limited to [−π/2, π/2] due to orientation symmetry of the
ellipse.

The above weights reflect the underlying structural motifs
present in hard ellipses at various values of η. Orientationally
aligned clusters of ellipses are present in both fluid and nematic
phases [compare, for instance, the snapshots in Figs. 4(b)
and 4(c)]. Therefore, orientations between nearby ellipses
[smaller values of k in Fig. 5(a)] are not useful indicators of
nascent orientational long-range order, and their contributions
to the OP are suppressed by the PCA. On the other hand,
long distance components are approximately equal-weighed
as they correlate proportionally to the presence of an emerg-
ing nematic director but average out for random configurations
in the fluid state.

Regarding the OP itself, we show P1 and its standard devi-
ation σ1 in Fig. 5(c); the latter quantity can be interpreted as
a type of susceptibility of the OP. Note that P1 resembles the
traditional OP Pmax

2 of Fig. 4 and, while responsive to the
nematic phase change, does not provide a unique transition
point. As such, we use σ1 to correlate the PCA results to the
fluid-nematic phase transition: the maximum of σ1 indicates
the region most consistent with large-scale configuration fluc-
tuations near the critical point of a continuous phase transition.
The maximum occurs at η ≈ 0.695, in close agreement with
η ≈ 0.696 identified by the point at which the power law
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FIG. 5. Based on PCA of the 2D system of hard ellipses, we show (a) com-
ponent weights [q1]k , (b) the explained variance λi, and (c) the OP (P1) and
standard deviation (σ1).

exponent φ decays to 1/4 in Fig. 4(a). Indeed, for all values of
κ investigated here, we find that the density η associated with
the maximum value of σ1 is in excellent agreement with fitted
fluid-nematic boundary reported by Xu et al.34 (see Fig. 6),
without requiring a tedious analysis of the long range scal-
ing behavior in the angular correlations employed by the latter
study.

While the use of orientational features as input to PCA
provides a means to detect the fluid-nematic phase transi-
tion, the relationship between the above PCA results and the
nematic-solid transition is less obvious. In Figs. 7(a) and 7(b),
we plot a normalized version of P1 and its standard deviation
σ1 derived from the orientational features against the known
nematic-solid coexistence region (the gray shaded area).
There is a weak response to the nematic-solid region as σ̃1

drops abruptly—perhaps an indicator of reduced orientational
freedom of the ellipses upon solidification. The weak response
is not surprising as angular degrees of freedom are an indi-
rect measure of the nematic-solid transition. Thus, in this
case, angular features do not capture the dominant physics

FIG. 6. Phase boundary of the isotropic fluid to nematic transition for a system
of hard ellipses as a function of packing fraction η and aspect ratio κ. Solid
black dots indicate the phase transition point identified from the position of
maximum susceptibility, max(σ1). The dashed gray line indicates the phase
boundary fit reported by Xu et al.34

FIG. 7. For the first PC of hard ellipses, comparison of the (a) shifted and

normalized PC scores P̃1 ≡
P1−min(P1)

max(P1−min(P1)) and (b) normalized standard devi-

ations σ̃1 ≡
σ1

max(σ1) , as derived from either orientational or positional feature
vectors. The dashed black vertical line indicates fluid-nematic boundary, and
the shaded gray region indicates the nematic-solid phase coexistence region
reported in Ref. 35.

governing the freezing transition and will require more suitable
features to more clearly delineate the phase transition.

In order to detect the center-of-mass level ordering that
occurs at the nematic-solid transition, we employ the posi-
tional NN features used for hard disks in Paper I.52 That is,
instead of including the relative angle between two ellipses
in the feature vector, we employ the interparticle distances.
In Figs. 7(a) and 7(b), we compare the normalized PC scores
P̃1 and the associated σ̃1, respectively, when these positional
features are used as input to the PCA. The resulting OP is insen-
sitive to the fluid-nematic boundary but grows sharply across
the known nematic-solid phase-coexistence region. Similar
to the orientational features, the maximum in the position-
based susceptibility σ1 in Fig. 7(b) is an appropriate identifier
for the underlying phase transition. The form of the OP as a
function of η—flat over the fluid phase, rapid growth upon
solidification, and more muted growth in the solid phase—is
qualitatively similar to the OP reported in Paper I52 for the
densification of hard disks. Together, the above results attest
to the ability of PCA to provide insights into the character of
a given phase transition by varying the form of the feature
vector.

C. Widom-Rowlinson model

As mentioned in Sec. II B 3, the WR model contains
two particles types—A and B—where like particles are non-
interacting and unlike particles interact via a hard-core repul-
sion of diameterσ. At low densities, the two species are mixed.
However, upon densification, a phase transition occurs37,38,48

where the WR mixture phase separates into A-rich and
B-rich regions [Figs. 8(a) and 8(b)] as the excluded volume
effects experienced by the unlike particles overcome the mix-
ing entropy. The density at which the demixing transition
occurs varies with composition; we denote x as the fraction
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FIG. 8. For the WR model at x = 0.5, simulated configuration snapshots of (a)
mixed WR particles at ρ = 1.25 (below the phase transition) and (b) demixed
WR particles at ρ = 2.5 (above the phase transition). (c) Fraction of percolated
configurations (f perc) as a function of number density.

of A particles. In the present work, we study the mixture for
which x = 0.5.

When x = 0.5, the density at which clusters of like parti-
cles become percolated can be used to determine the demixing
transition.38,49,50 For the WR model, a cluster is defined as a
group of particles that are all either directly overlapping or
connected via a contiguous pathway of overlapping particles
when periodic boundary conditions are properly taken into
account. For a finite-sized, periodically replicated simulation
box, a percolated cluster is one that grows in size upon repli-
cation of the simulation cell. Therefore, for each species at
x = 0.5, we computed the fraction of configurations possessing
at least one percolated cluster of that particle type and averaged
the results for the A and B particles to yield f perc. Figure 8(c)
shows f perc as a function of density; percolated clusters were
identified as described in Ref. 51. One choice for the percola-
tion threshold—the point when at least 50% of the configura-
tions are percolated—yields a de-mixing transition density of
ρt = 1.68.

Positional features of the form defined by Eqs. (2)–(4)
are unable to detect the above de-mixing transition if com-
positional degrees of freedom are not taken into account—a
consequence of the absence of large scale fluctuations in the
packings of the particles (agnostic to particle type) as the phase
transition occurs. However, for any multicomponent mixture,
features can be constructed using particle type data as well
as spatial information. For the WR model, one such strategy
is to design a feature vector that only includes interparticle
distances if the corresponding pair of particles meets some
criterion based on the particle type. One such choice (though
others are possible) is to only include distances between two A
particles in the feature vector defined by Eqs. (2)–(4)—akin to
the liquid-gas formulation of the WR model. The outcome
of PCA with the above feature vector is shown in Fig. 9.
The component weights [q1]k in Fig. 9(a) indicate that the

FIG. 9. For the first PC upon application of PCA to the WR model, (a) its
component weights [q1]k , (b) the explained variance λi for the first 20 com-
ponents, and (c) the PCA-deduced OP (P1) and percolation-based OP (f perc).
(Inset) The standard deviation σ1 of the PCA OP.

long-ranged positional correlations dominate, whereas the
smallest interparticle separations with respect to a given probe
are essentially meaningless to the PCA. Reminiscent of the
fluid-nematic transition seen in ellipses and described in
Sec. III B, some local clustering on the basis of the parti-
cle type occurs at lower densities than phase separation does;
see Fig. 8(a), for example. Therefore, it is the long-range cor-
relations that change sharply as the phase transition occurs.
Figure 9(b) depicts the explained variance λi for the first
20 PCs, where the first PC accounts for ∼10% of the data
variance—an order of magnitude more than the succeeding
components.

The PCA-deduced OP is shown in Fig. 9(c). Relative to
f perc, the PCA-based OP varies more slowly and has a wider
transition window. To identify the unique transition point, the
standard deviationσ1, as outlined in Sec. III B, is computed for
every density and shown in the inset of Fig. 9(c). The maximum
value of σ1, denoting the region with most variance in the fea-
ture vectors, is accepted as being associated with the transition
density ρt . For the above one-component mixture, a peak in the
standard deviation is observed at ρt = 1.66, which is in excel-
lent agreement with the value obtained through percolation
arguments (ρt = 1.68)—indicating successful identification of
the de-mixing transition.

IV. CONCLUSIONS

In this article, we extended the PCA framework
introduced in Paper I52 to detect phase transitions in three
new model systems, each characterized by very different
physics. The success of the method in these cases highlights
the importance of exploring various feature representations
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when seeking to detect such phase transitions and understand
their underlying physics.

Moving forward, two avenues seem fruitful for develop-
ing a routine analysis toolkit: (1) curate a sufficiently diverse
library of features, each focused on different physical aspects
that may be relevant to various phase transitions of interest, and
(2) explore the ability of more sophisticated, nonlinear learn-
ers to autonomously extract the physical intuition underlying
such transitions on-the-fly.

Finally, we comment on general trends that we observed
to indicate that the PCA calculation was usefully reporting
on the phase transition of interest. First we note that mean-
ingful dimensionality reduction into the first PC is generally
indicated by a large relative explained variance in comparison
to the higher order PCs. Furthermore, we found that appro-
priate choices for the features resulted in an OP with strong
convergence properties that required relatively small amounts
of data to overcome sampling noise. We expect that these
trends are relevant to other machine-learning approaches for
the detection of phase transitions as well.
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Rowlinson model by stochastic geometric methods,” Commun. Math. Phys.
172, 551–569 (1995).

39V. Botu and R. Ramprasad, “Learning scheme to predict atomic
forces and accelerate materials simulations,” Phys. Rev. B 92, 094306
(2015).

40B. Venkatesh and R. Rampi, “Adaptive machine learning framework to
accelerate ab initio molecular dynamics,” Int. J. Quantum Chem. 115,
1074–1083 (2014).

 18 D
ecem

ber 2023 14:25:29

https://arxiv.org/abs/1404.1100
https://doi.org/10.1103/physreve.62.8438
https://doi.org/10.1063/1.4938249
https://doi.org/10.1038/nphys4035
https://doi.org/10.1038/nphys4035
https://doi.org/10.1038/nphys4037
https://doi.org/10.1103/physreve.95.062122
https://doi.org/10.1103/physrevb.94.195105
https://doi.org/10.1103/physrevb.94.195105
https://doi.org/10.1103/physreve.96.022140
https://doi.org/10.1103/physrevb.96.205146
https://doi.org/10.1103/physrevb.96.144432
https://doi.org/10.1007/s11467-018-0798-7
https://doi.org/10.1111/j.1749-6632.1949.tb27296.x
https://doi.org/10.1111/j.1749-6632.1949.tb27296.x
https://doi.org/10.1016/j.physa.2006.04.007
https://doi.org/10.1140/epjst/e2016-60084-6
https://doi.org/10.1103/physreve.92.052311
https://doi.org/10.1039/c2sm07156h
https://doi.org/10.1103/revmodphys.88.045006
https://doi.org/10.1103/revmodphys.88.045006
https://doi.org/10.1088/0034-4885/76/12/126601
https://doi.org/10.1088/0034-4885/76/12/126601
https://doi.org/10.1103/physreve.95.042902
https://doi.org/10.1103/physreve.95.032606
https://doi.org/10.1073/pnas.1619260114
https://doi.org/10.1038/nphys891
https://doi.org/10.1088/1742-5468/2016/03/033501
https://doi.org/10.1088/1742-5468/2016/03/033501
https://doi.org/10.1103/physreve.88.062308
https://doi.org/10.1063/1.1676946
https://doi.org/10.1103/physreva.42.2126
https://doi.org/10.1063/1.4812361
https://doi.org/10.1063/1.4878411
https://doi.org/10.1063/1.1673203
https://doi.org/10.1103/physrevlett.27.1040
https://doi.org/10.1007/bf02101808
https://doi.org/10.1103/physrevb.92.094306
https://doi.org/10.1002/qua.24836


194110-11 Jadrich et al. J. Chem. Phys. 149, 194110 (2018)
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