894 research outputs found

    Knowledge management challenges in corporate venturing and technological capability building through radical innovations

    Get PDF
    radical innovation, technological capability, corporate venturing, knowledge management

    Sideband cooling while preserving coherences in the nuclear spin state in group-II-like atoms

    Full text link
    We propose a method for laser cooling group-II-like atoms without changing the quantum state of their nuclear spins, thus preserving coherences that are usually destroyed by optical pumping. As group-II-like atoms have a 1S0^1S_0 closed-shell ground state, nuclear spin and electronic degrees of freedom are decoupled, allowing for independent manipulation. The hyperfine interaction that couples these degrees of freedom in excited states can be suppressed through the application of external magnetic fields. Our protocol employs resolved-sideband cooling on the forbidden clock transition, 1S0→3P0^1S_0 \to {}^3P_0, with quenching via coupling to the rapidly decaying 1P1^1P_1 state, deep in the Paschen-Back regime. This makes it possible to laser cool neutral atomic qubits without destroying the quantum information stored in their nuclear spins, as shown in two examples, 171^{171}Yb and 87^{87}Sr.Comment: 4 pages, 3 figures v4: minor changes in text, changes in the references, published versio

    Weyl-van-der-Waerden formalism for helicity amplitudes of massive particles

    Get PDF
    The Weyl-van-der-Waerden spinor technique for calculating helicity amplitudes of massive and massless particles is presented in a form that is particularly well suited to a direct implementation in computer algebra. Moreover, we explain how to exploit discrete symmetries and how to avoid unphysical poles in amplitudes in practice. The efficiency of the formalism is demonstrated by giving explicit compact results for the helicity amplitudes of the processes gamma gamma -> f fbar, f fbar -> gamma gamma gamma, mu^- mu^+ -> f fbar gamma.Comment: 24 pages, late

    Heavy Top Quark Searches in the Di-Lepton Mode at the Tevatron

    Full text link
    We present the results of a detailed study of the effects of bb-tagging on the heavy top-quark signal and backgrounds for the modes of the di-lepton plus two high transverse energy jets at the Fermilab Tevatron. The general characteristics of the heavy top-quark signal events are also discussed so that a comparison can be made between bb-tagging and imposing stringent kinematical cuts to eliminate backgrounds.Comment: uses PHYZZX and TABLES macros, 10 pages, four figures not included (available by request), FERMILAB-Pub-93/105-

    Multiphoton Production at High Energies in the Standard Model I

    Full text link
    We examine multiphoton production in the electroweak sector of the Standard Model in the high energy limit using the equivalence theorem in combination with spinor helicity techniques. We obtain recursion relations for currents consisting of a charged scalar, spinor, or vector line that radiates nn photons. Closed form solutions to these recursion relations for arbitrary nn are presented for the cases of like-helicity and one unlike-helicity photon production. We apply the currents singly and in pairs to obtain amplitudes for processes involving the production of nn photons with up to two unlike helicities from a pair of charged particles. The replacement of one or more photons by transversely polarized Z$-bosons is also discussed.Comment: 75 pages, CLNS 91/111

    Amplitudes With Different Helicity Configurations Of Noncommutative QED

    Get PDF
    The amplitudes of purely photonic and photon{2-fermion processes of non- commutative QED (NCQED) are derived for different helicity configurations of photons. The basic ingredient is the NCQED counterpart of Yang-Mills recursion relations by means of Berends and Giele. The explicit solutions of recursion relations for NCQED photonic processes with special helicity configurations are presented.Comment: 23 pages, 2 figure

    Charge asymmetry in hadroproduction of heavy quarks

    Get PDF
    A sizeable difference in the differential production cross section of top and antitop quarks, respectively, is predicted for hadronically produced heavy quarks. It is of order αs\alpha_s and arises from the interference between charge odd and even amplitudes respectively. For the TEVATRON it amounts to approximately 5-10% in the region where the cross section is large and could therefore be measured in the next round of experiments. At the LHC the asymmetry can be studied by selecting appropriately chosen kinematical regions.Comment: LaTeX, 5pp, 5 figures, uses revtex. The complete paper, including figures, is also available via anonymous ftp at ftp://ttpux2.physik.uni-karlsruhe.de/ , or via www at http://www-ttp.physik.uni-karlsruhe.de/cgi-bin/preprints/ Final version as published in Phys.Rev.Let

    Local Interactions of Higher-Spin Potentials That are Gauge Invariant in Linear Approximation

    Full text link
    We study connected Wightman functions of NN conserved currents, each of which is formed from a scalar field and has even spin lil_{i}. The UV divergence of this vertex function is regularized by the analytic continuation in the space dimension D⟶D−ϔD\longrightarrow D-\epsilon. We evaluate the residue of ϔ−1\epsilon ^{-1} only, which is a local interaction Lagrangian density and gauge invariant in linearComment: Talk given at Group XXVII Yerevan, Armenia, August 13-29, 2008, v.2 published in Yadernaya Fizika 73 (2010) 518-52

    On the Cause of the Mid‐Pleistocene Transition

    Get PDF
    The Mid-Pleistocene Transition (MPT), where the Pleistocene glacial cycles changed from 41 to ∌100 kyr periodicity, is one of the most intriguing unsolved issues in the field of paleoclimatology. Over the course of over four decades of research, several different physical mechanisms have been proposed to explain the MPT, involving non-linear feedbacks between ice sheets and the global climate, the solid Earth, ocean circulation, and the carbon cycle. Here, we review these different mechanisms, comparing how each of them relates to the others, and to the currently available observational evidence. Based on this discussion, we identify the most important gaps in our current understanding of the MPT. We discuss how new model experiments, which focus on the quantitative differences between the different physical mechanisms, could help fill these gaps. The results of those experiments could help interpret available proxy evidence, as well as new evidence that is expected to become available

    On the Cause of the Mid-Pleistocene Transition

    Get PDF
    The Mid-Pleistocene Transition (MPT), where the Pleistocene glacial cycles changed from 41 to ∌100 kyr periodicity, is one of the most intriguing unsolved issues in the field of paleoclimatology. Over the course of over four decades of research, several different physical mechanisms have been proposed to explain the MPT, involving non-linear feedbacks between ice sheets and the global climate, the solid Earth, ocean circulation, and the carbon cycle. Here, we review these different mechanisms, comparing how each of them relates to the others, and to the currently available observational evidence. Based on this discussion, we identify the most important gaps in our current understanding of the MPT. We discuss how new model experiments, which focus on the quantitative differences between the different physical mechanisms, could help fill these gaps. The results of those experiments could help interpret available proxy evidence, as well as new evidence that is expected to become available
    • 

    corecore