research

Sideband cooling while preserving coherences in the nuclear spin state in group-II-like atoms

Abstract

We propose a method for laser cooling group-II-like atoms without changing the quantum state of their nuclear spins, thus preserving coherences that are usually destroyed by optical pumping. As group-II-like atoms have a 1S0^1S_0 closed-shell ground state, nuclear spin and electronic degrees of freedom are decoupled, allowing for independent manipulation. The hyperfine interaction that couples these degrees of freedom in excited states can be suppressed through the application of external magnetic fields. Our protocol employs resolved-sideband cooling on the forbidden clock transition, 1S03P0^1S_0 \to {}^3P_0, with quenching via coupling to the rapidly decaying 1P1^1P_1 state, deep in the Paschen-Back regime. This makes it possible to laser cool neutral atomic qubits without destroying the quantum information stored in their nuclear spins, as shown in two examples, 171^{171}Yb and 87^{87}Sr.Comment: 4 pages, 3 figures v4: minor changes in text, changes in the references, published versio

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 27/12/2021
    Last time updated on 02/01/2020