43,752 research outputs found

    Frustration effects in magnetic molecules

    Full text link
    By means of exact diagonalization we study the ground-state and the low-temperature physics of the Heisenberg antiferromagnet on the cuboctahedron and the icosidodecahedron. Both are frustrated magnetic polytopes and correspond to the arrangement of magnetic atoms in the magnetic molecules Cu12La8 and Mo72Fe30. The interplay of strong quantum fluctuations and frustration influences the ground state spin correlations drastically and leads to an interesting magnetization process at low temperatures. Furthermore the frustration yields low-lying non-magnetic excitations resulting in an extra low-temperature peak in the specific heat.Comment: 4 pages, 7 figure

    Trip-Based Public Transit Routing

    Get PDF
    We study the problem of computing all Pareto-optimal journeys in a public transit network regarding the two criteria of arrival time and number of transfers taken. We take a novel approach, focusing on trips and transfers between them, allowing fine-grained modeling. Our experiments on the metropolitan network of London show that the algorithm computes full 24-hour profiles in 70 ms after a preprocessing phase of 30 s, allowing fast queries in dynamic scenarios.Comment: Minor corrections, no substantial changes. To be presented at ESA 201

    Solitary-wave description of condensate micro-motion in a time-averaged orbiting potential trap

    Full text link
    We present a detailed theoretical analysis of micro-motion in a time-averaged orbiting potential trap. Our treatment is based on the Gross-Pitaevskii equation, with the full time dependent behaviour of the trap systematically approximated to reduce the trapping potential to its dominant terms. We show that within some well specified approximations, the dynamic trap has solitary-wave solutions, and we identify a moving frame of reference which provides the most natural description of the system. In that frame eigenstates of the time-averaged orbiting potential trap can be found, all of which must be solitary-wave solutions with identical, circular centre of mass motion in the lab frame. The validity regime for our treatment is carefully defined, and is shown to be satisfied by existing experimental systems.Comment: 12 pages, 2 figure

    Asymptotics of relative heat traces and determinants on open surfaces of finite area

    Full text link
    The goal of this paper is to prove that on surfaces with asymptotically cusp ends the relative determinant of pairs of Laplace operators is well defined. We consider a surface with cusps (M,g) and a metric h on the surface that is a conformal transformation of the initial metric g. We prove the existence of the relative determinant of the pair (Δh,Δg)(\Delta_{h},\Delta_{g}) under suitable conditions on the conformal factor. The core of the paper is the proof of the existence of an asymptotic expansion of the relative heat trace for small times. We find the decay of the conformal factor at infinity for which this asymptotic expansion exists and the relative determinant is defined. Following the paper by B. Osgood, R. Phillips and P. Sarnak about extremal of determinants on compact surfaces, we prove Polyakov's formula for the relative determinant and discuss the extremal problem inside a conformal class. We discuss necessary conditions for the existence of a maximizer.Comment: This is the final version of the article before it gets published. 51 page
    • …
    corecore