research

Programmable trap geometries with superconducting atom chips

Abstract

We employ the hysteretic behavior of a superconducting thin film in the remanent state to generate different traps and flexible magnetic potentials for ultra-cold atoms. The trap geometry can be programmed by externally applied fields. This new approach for atom-optics is demonstrated by three different trap types realized on a single micro-structure: a Z-type trap, a double trap and a bias field free trap. Our studies show that superconductors in the remanent state provide a new versatile platform for atom-optics and applications in ultra-cold quantum gases

    Similar works