289 research outputs found

    Quantum data gathering

    Get PDF
    Measurement of a quantum system – the process by which an observer gathers information about it – provides a link between the quantum and classical worlds. The nature of this process is the central issue for attempts to reconcile quantum and classical descriptions of physical processes. Here, we show that the conventional paradigm of quantum measurement is directly responsible for a well-known disparity between the resources required to extract information from quantum and classical systems. We introduce a simple form of quantum data gathering, “coherent measurement”, that eliminates this disparity and restores a pleasing symmetry between classical and quantum statistical inference. To illustrate the power of quantum data gathering, we demonstrate that coherent measurements are optimal and strictly more powerful than conventional one-at-a-time measurements for the task of discriminating quantum states, including certain entangled many-body states (e.g., matrix product states)

    The ground state of a class of noncritical 1D quantum spin systems can be approximated efficiently

    Full text link
    We study families H_n of 1D quantum spin systems, where n is the number of spins, which have a spectral gap \Delta E between the ground-state and first-excited state energy that scales, asymptotically, as a constant in n. We show that if the ground state |\Omega_m> of the hamiltonian H_m on m spins, where m is an O(1) constant, is locally the same as the ground state |\Omega_n>, for arbitrarily large n, then an arbitrarily good approximation to the ground state of H_n can be stored efficiently for all n. We formulate a conjecture that, if true, would imply our result applies to all noncritical 1D spin systems. We also include an appendix on quasi-adiabatic evolutions.Comment: 9 pages, 1 eps figure, minor change

    When the optimal is not the best: parameter estimation in complex biological models

    Get PDF
    Background: The vast computational resources that became available during the past decade enabled the development and simulation of increasingly complex mathematical models of cancer growth. These models typically involve many free parameters whose determination is a substantial obstacle to model development. Direct measurement of biochemical parameters in vivo is often difficult and sometimes impracticable, while fitting them under data-poor conditions may result in biologically implausible values. Results: We discuss different methodological approaches to estimate parameters in complex biological models. We make use of the high computational power of the Blue Gene technology to perform an extensive study of the parameter space in a model of avascular tumor growth. We explicitly show that the landscape of the cost function used to optimize the model to the data has a very rugged surface in parameter space. This cost function has many local minima with unrealistic solutions, including the global minimum corresponding to the best fit. Conclusions: The case studied in this paper shows one example in which model parameters that optimally fit the data are not necessarily the best ones from a biological point of view. To avoid force-fitting a model to a dataset, we propose that the best model parameters should be found by choosing, among suboptimal parameters, those that match criteria other than the ones used to fit the model. We also conclude that the model, data and optimization approach form a new complex system, and point to the need of a theory that addresses this problem more generally

    Transverse Electronic Transport through DNA Nucleotides with Functionalized Graphene Electrodes

    Full text link
    Graphene nanogaps and nanopores show potential for the purpose of electrical DNA sequencing, in particular because single-base resolution appears to be readily achievable. Here, we evaluated from first principles the advantages of a nanogap setup with functionalized graphene edges. To this end, we employed density functional theory and the non-equilibrium Green's function method to investigate the transverse conductance properties of the four nucleotides occurring in DNA when located between the opposing functionalized graphene electrodes. In particular, we determined the electrical tunneling current variation as a function of the applied bias and the associated differential conductance at a voltage which appears suitable to distinguish between the four nucleotides. Intriguingly, we observe for one of the nucleotides a negative differential resistance effect.Comment: 19 pages, 7 figure

    Rate-equation calculations of the current flow through two-site molecular device and DNA-based junction

    Full text link
    Here we present the calculations of incoherent current flowing through the two-site molecular device as well as the DNA-based junction within the rate-equation approach. Few interesting phenomena are discussed in detail. Structural asymmetry of two-site molecule results in rectification effect, which can be neutralized by asymmetric voltage drop at the molecule-metal contacts due to coupling asymmetry. The results received for poly(dG)-poly(dC) DNA molecule reveal the coupling- and temperature-independent saturation effect of the current at high voltages, where for short chains we establish the inverse square distance dependence. Besides, we document the shift of the conductance peak in the direction to higher voltages due to the temperature decrease.Comment: 12 pages, 6 figure

    Numerical study of linear and circular model DNA chains confined in a slit: metric and topological properties

    Full text link
    Advanced Monte Carlo simulations are used to study the effect of nano-slit confinement on metric and topological properties of model DNA chains. We consider both linear and circularised chains with contour lengths in the 1.2--4.8 ÎĽ\mum range and slits widths spanning continuously the 50--1250nm range. The metric scaling predicted by de Gennes' blob model is shown to hold for both linear and circularised DNA up to the strongest levels of confinement. More notably, the topological properties of the circularised DNA molecules have two major differences compared to three-dimensional confinement. First, the overall knotting probability is non-monotonic for increasing confinement and can be largely enhanced or suppressed compared to the bulk case by simply varying the slit width. Secondly, the knot population consists of knots that are far simpler than for three-dimensional confinement. The results suggest that nano-slits could be used in nano-fluidic setups to produce DNA rings having simple topologies (including the unknot) or to separate heterogeneous ensembles of DNA rings by knot type.Comment: 12 pages, 10 figure

    Out-of-equilibrium physics in driven dissipative coupled resonator arrays

    Get PDF
    Coupled resonator arrays have been shown to exhibit interesting many- body physics including Mott and Fractional Hall states of photons. One of the main differences between these photonic quantum simulators and their cold atoms coun- terparts is in the dissipative nature of their photonic excitations. The natural equi- librium state is where there are no photons left in the cavity. Pumping the system with external drives is therefore necessary to compensate for the losses and realise non-trivial states. The external driving here can easily be tuned to be incoherent, coherent or fully quantum, opening the road for exploration of many body regimes beyond the reach of other approaches. In this chapter, we review some of the physics arising in driven dissipative coupled resonator arrays including photon fermionisa- tion, crystallisation, as well as photonic quantum Hall physics out of equilibrium. We start by briefly describing possible experimental candidates to realise coupled resonator arrays along with the two theoretical models that capture their physics, the Jaynes-Cummings-Hubbard and Bose-Hubbard Hamiltonians. A brief review of the analytical and sophisticated numerical methods required to tackle these systems is included.Comment: Chapter that appeared in "Quantum Simulations with Photons and Polaritons: Merging Quantum Optics with Condensed Matter Physics" edited by D.G.Angelakis, Quantum Science and Technology Series, Springer 201

    Consequences of Intraspecific Variation in Seed Dispersal for Plant Demography, Communities, Evolution and Global Change

    Get PDF
    As the single opportunity for plants to move, seed dispersal has an important impact on plant fitness, species distributions and patterns of biodiversity. However, models that predict dynamics such as risk of extinction, range shifts and biodiversity loss tend to rely on the mean value of parameters and rarely incorporate realistic dispersal mechanisms. By focusing on the mean population value, variation among individuals or variability caused by complex spatial and temporal dynamics is ignored. This calls for increased efforts to understand individual variation in dispersal and integrate it more explicitly into population and community models involving dispersal. However, the sources, magnitude and outcomes of intraspecific variation in dispersal are poorly characterized, limiting our understanding of the role of dispersal in mediating the dynamics of communities and their response to global change. In this manuscript, we synthesize recent research that examines the sources of individual variation in dispersal and emphasize its implications for plant fitness, populations and communities. We argue that this intraspecific variation in seed dispersal does not simply add noise to systems, but, in fact, alters dispersal processes and patterns with consequences for demography, communities, evolution and response to anthropogenic changes. We conclude with recommendations for moving this field of research forward
    • …
    corecore