1,588 research outputs found
Performance analysis of a micro CHP system based on high temperature PEM fuel cells subjected to degradation
Micro Combined Heat and Power (microCHP) systems based on High Temperature Polymer Electrolyte Membrane (HTPEM) fuel cells is a promising technology allowing to produce electricity and heat with very high efficiency and low emissions also for small power systems. Polybenzimidazole (PBI) based HTPEM fuel cells, thanks to their high CO tolerance, allow the use of fuels other than pure hydrogen by means of a simplified fuel processing unit. However, their relatively low performance and performance degradation rate are still issues to be overcome in order to allow commercialization. In this work, an energy simulation model developed by the authors in a previous research work, has been improved taking into account the degradation of the fuel cell stack in order to assess the performance of the system over long period of operation. The fuel cells performance degradation over time has been implemented on the basis of experimental data obtained by the authors and on data found in literature. The performance of the system has been studied in different configurations that include the introduction of a lithium battery storage in addition to the fuel cell stack.
System parameters, such as electrical and thermal energy production, import/export of electricity and primary energy savings have been calculated and compared for different system configurations. Results show that battery integration can improve system performance and that the effect of fuel cell degradation reduces the electricity production. The effect on overall efficiency can be mitigated if heat is recovered
A portable electrochemiluminescence aptasensor for β-lactoglobulin detection
Cow’s milk allergy is one of the most common food allergies in children with a prevalence of around 2.5%. Milk contains several allergens; the main ones are caseins and β-lactoglobulin (β-LG). At regulatory level, β-LG is not explicitly named, but milk is included in the list of substances or products causing allergies or intolerances. Hence, the presence of β-LG can be a useful marker for determining the presence of milk in food. In this work, we present an aptasensor based on electrochemiluminescence (ECL) for the quantification of β-LG in real food matrices displaying integrated advantages consisting of high specificity, good sensitivity, portability, and cost effectiveness. The performance and applicability of this sensor were tested by analyzing a sample of skimmed milk and an oat-based drink proposed as a vegetable substitute for milk of animal origin. We obtained a linear correlation between the intensity of the signal and the concentration of β-LG standard solutions (y = x * 0.00653 + 1.038, R2 = 0.99). The limit of detection (LOD) and the limit of quantification (LOQ) were found to be 1.36 and 4.55 μg L−1, respectively. Graphical abstract: [Figure not available: see fulltext.
Hydrologically induced slope deformations detected by GPS and clinometric surveys in the Cansiglio Plateau, southern Alps
Changes in groundwater or surface water level may cause observable deformation of the drainage basins in different ways. We describe an active slope deformation monitored with GPS and tiltmeter stations in a karstic limestone plateau in southeastern Alps (Cansiglio Plateau). The observed transient GPS deformation clearly correlates with the rainfall. Both GPS and tiltmeter equipments react instantly to heavy rains displaying abrupt offsets, but with different time constants, demonstrating the response to different catchment volumes. The GPS movement is mostly confined in the horizontal plane (SSW direction) showing a systematic tendency to rebound in the weeks following the rain. Four GPS stations concur to define a coherent deformation pattern of a wide area (12
75km2), concerning the whole southeastern slope of the plateau. The plateau expands and rebounds radially after rain by an amount up to a few centimeters and causing only small vertical deformation. The effect is largest where karstic features are mostly developed, at the margin of the plateau where a thick succession of Cretaceous peritidal carbonates faces the Venetian lowland. Acouple of tiltmeters installed in a cave at the top of the plateau, detect a much faster deformation, that has the tendency to rebound in less than 6h. The correlation to rainfall is less straightforward, and shows a more complex behavior during rainy weather. The different responses demonstrate a fast hydrologic flow in the more permeable epikarst for the tiltmeters, drained by open fractures and fissures in the neighborhood of the cave, and a rapid tensile dislocation of the bedrock measured at the GPS stations that affect the whole slope of the mountain. In the days following the rain, both tiltmeter and GPS data show a tendency to retrieve the displacement which is consistent with the phreatic discharge curve. We propose that hydrologically active fractures recharged by rainfall are the most likely features capable to induce the observed strain variations
Toward an Energy Efficient Language and Compiler for (Partially) Reversible Algorithms
We introduce a new programming language for expressing reversibility,
Energy-Efficient Language (Eel), geared toward algorithm design and
implementation. Eel is the first language to take advantage of a partially
reversible computation model, where programs can be composed of both reversible
and irreversible operations. In this model, irreversible operations cost energy
for every bit of information created or destroyed. To handle programs of
varying degrees of reversibility, Eel supports a log stack to automatically
trade energy costs for space costs, and introduces many powerful control logic
operators including protected conditional, general conditional, protected
loops, and general loops. In this paper, we present the design and compiler for
the three language levels of Eel along with an interpreter to simulate and
annotate incurred energy costs of a program.Comment: 17 pages, 0 additional figures, pre-print to be published in The 8th
Conference on Reversible Computing (RC2016
4D Spin Glasses in Magnetic Field Have a Mean Field like Phase
By using numerical simulations we show that the 4D Edwards Anderson
spin glass in magnetic field undergoes a mean field like phase transition. We
use a dynamical approach: we simulate large lattices (of volume ) and work
out the behavior of the system in limit where both and go to infinity,
but where the limit is taken first. By showing that the dynamic
overlap converges to a value smaller than the static one we exhibit replica
symmetry breaking. The critical exponents are compatible with the ones obtained
by mean field computations.Comment: Physrev format, 5 ps figures include
Occurrence of C60 and related fullerenes in the Sava River under different hydrologic conditions
The presence of nanomaterials in the environment has caught the attention of the scientific because of the uncertainties in their fate, mobility and potential toxic effects. However, few studies have determined experimentally their concentration levels in aquatic systems up to date, which complicates the development of an adequate risk assessment. In the present study, the occurrence of ten fullerenes has been assessed in the Sava River (Southeastern Europe): 27 freshwater samples and 12 sediment samples from 12 sampling points have been analysed during two sampling campaigns. C was the most ubiquitous fullerene, with concentrations of 8 pg/l–59 ng/l and 108–895 pg/g in water and sediments, respectively. Statistically significant differences existed between the levels in 2014 and 2015, which has been attributed to the extreme hydrologic conditions (severe floods and drought, respectively). C fullerene has been detected in most of the samples and the fullerene derivatives [6,6]-phenyl C butyric acid methyl ester and N‑methyl fulleropyrrolidine have been detected eventually, which highlights that nanotechnology research and development activities are responsible for emitting these emerging contaminants to the environment. The role of diverse potential anthropogenic sources (including oil refinery, general industrial activity, river navigation, urban emissions and nanotechnology) is discussed
Predictors of Hepatocellular Carcinoma Early Recurrence in Patients Treated with Surgical Resection or Ablation Treatment: A Single-Center Experience
Introduction: Hepatocellular carcinoma (HCC) is the sixth most diagnosed malignancy and the fourth leading cause of cancer-related death worldwide, with poor overall survival despite available curative treatments. One of the most crucial factors influencing survival in HCC is recurrence. The current study aims to determine factors associated with early recurrence of HCC in patients with BCLC Stage 0 or Stage A treated with surgical resection or local ablation. Materials and Methods: We retrospectively enrolled 58 consecutive patients diagnosed with HCC within BCLC Stage 0 or Stage A and treated either by surgical resection or local ablation with maximum nodule diameter 20 mm (HR 4.5, 95% C.I. 3.9–5.1), platelet count 2 (HR 2.7, 95% C.I. 2.2–3.3). Discussion and Conclusions: Our results are in line with the current literature. Male gender and tumor nodule dimension are the main risk factors associated with early HCC recurrence. Platelet count and other combined scores can be used as predictive tools for early HCC recurrence, although more studies are needed to define cut-offs
A general method to determine replica symmetry breaking transitions
We introduce a new parameter to investigate replica symmetry breaking
transitions using finite-size scaling methods. Based on exact equalities
initially derived by F. Guerra this parameter is a direct check of the
self-averaging character of the spin-glass order parameter. This new parameter
can be used to study models with time reversal symmetry but its greatest
interest concerns models where this symmetry is absent. We apply the method to
long-range and short-range Ising spin glasses with and without magnetic field
as well as short-range multispin interaction spin glasses.Comment: 5 pages, 4 figures, Revtex fil
Exploiting the Photonic Crystal Properties of TiO2 Nanotube Arrays To Enhance Photocatalytic Hydrogen Production
Two series of self-assembled TiO2 nanotube (NT) arrays were grown by electrochemical anodization on a metallic titanium substrate with different anodization times and applied potentials in HF-containing ethylene glycol electrolyte solutions and postcalcined at 450 \ub0C. The obtained thin films were characterized by FESEM, XRD, UV-vis-NIR DRS analyses and tested as photoanodes in incident photon to current efficiency (IPCE) measurements and in a two-compartment photoelectrochemical cell (PEC) for separate H2 and O2 production. The photocatalytic performance of the NT arrays significantly increased with an increase in the potential applied during anodization (i.e., with increasing the NT inner diameter) and the incident angle of the light. IPCE measurements revealed that such unexpected behavior is due to a red shift of the activity threshold that allows harvesting and converting a larger portion of the solar spectrum. This phenomenon is ascribed to the parallel shift of the photonic band gap position originated by the intrinsic photonic crystal properties and demonstrates the important role played by ordered hierarchical structures in improving the photocatalytic performance of NT arrays by confining and manipulating light
- …