714 research outputs found

    Family, frailty, and fatal futures? Own-health and family-health predictors of subjective life expectancy

    Get PDF
    pre-printSubjective life expectancy is a powerful predictor of a variety of health and economic behaviors. This research expands upon the life expectancy literature by examining the influence of familial health histories. Using a genetic/environmental model, we hypothesize that individuals' assessments of their life expectancies will be linked to the health of first-degree and second-degree relatives, with same-sex relatives' health exercising a stronger effect than that of opposite-sex relatives. Multivariate analyses based on data from a 2009 survey merged with familial health records (N=1,019) confirm that the health experiences of same-sex, first-degree relatives are linked to respondents' subjective life expectancy. The relationship between the health experiences of second-degree relatives and subjective life expectancy is much less pronounced. These findings have the potential to not only to inform our understanding of health behaviors, but also to encourage communication between patients and health professionals aimed at promoting preventative behaviors

    Molecular brakes regulating mTORC1 activation in skeletal muscle following synergist ablation

    Get PDF
    The goal of the current work was to profile positive (mTORC1 activation, autocrine/paracrine growth factors) and negative [AMPK, unfolded protein response (UPR)] pathways that might regulate overload-induced mTORC1 (mTOR complex 1) activation with the hypothesis that a number of negative regulators of mTORC1 will be engaged during a supraphysiological model of hypertrophy. To achieve this, mTORC1- IRS-1/2 signaling, BiP/CHOP/IRE1, and AMPK activation were determined in rat plantaris muscle following synergist ablation (SA). SA resulted in significant increases in muscle mass of 4% per day throughout the 21 days of the experiment. The expression of the insulin-like growth factors (IGF) were high throughout the 21st day of overload. However, IGF signaling was limited, since IRS-1 and -2 were undetectable in the overloaded muscle from day 3 to day 9. The decreases in IRS-1/2 protein were paralleled by increases in GRB10 Ser501/503 and S6K1 Thr389 phosphorylation, two mTORC1 targets that can destabilize IRS proteins. PKB Ser473 phosphorylation was higher from 3– 6 days, and this was associated with increased TSC2 Thr939 phosphorylation. The phosphorylation of TSC2 Thr1345 (an AMPK site) was also elevated, whereas phosphorylation at the other PKB site, Thr1462, was unchanged at 6 days. In agreement with the phosphorylation of Thr1345, SA led to activation of AMPK1 during the initial growth phase, lasting the first 9 days before returning to baseline by day 12. The UPR markers CHOP and BiP were elevated over the first 12 days following ablation, whereas IRE1 levels decreased. These data suggest that during supraphysiological muscle loading at least three potential molecular brakes engage to downregulate mTORC1. m

    Taxation and Stability in Cooperative Games

    Get PDF
    ABSTRACT Cooperative games are a useful framework for modeling multiagent behavior in environments where agents must collaborate in order to complete tasks. Having jointly completed a task and generated revenue, agents need to agree on some reasonable method of sharing their profits. One particularly appealing family of payoff divisions is the core, which consists of all coalitionally rational (or, stable) payoff divisions. Unfortunately, it is often the case that the core of a game is empty, i.e. there is no payoff scheme guaranteeing each group of agents a total payoff higher than what they can get on their own. As stability is a highly attractive property, there have been various methods of achieving it proposed in the literature. One natural way of stabilizing a game is via taxation, i.e. reducing the value of some coalitions in order to decrease their bargaining power. Existing taxation methods include the ε-core, the least-core and several others. However, taxing coalitions is in general undesirable: one would not wish to overly tamper with a given coalitional game, or overly tax the agents. Thus, in this work we study minimal taxation policies, i.e. those minimizing the amount of tax required in order to stabilize a given game. We show that games that minimize the total tax are to some extent a linear approximation of the original games, and explore their properties. We demonstrate connections between the minimal tax and the cost of stability, and characterize the types of games for which it is possible to obtain a tax-minimizing policy using variants of notion of the ε-core, as well as those for which it is possible to do so using reliability extensions

    Towards Studying Hierarchical Assembly in Real Time: A Milky Way Progenitor Galaxy at z = 2.36 under the Microscope

    Full text link
    We use Hubble Space Telescope (HST) imaging and near-infrared spectroscopy from Keck/MOSFIRE to study the sub-structure around the progenitor of a Milky Way-mass galaxy in the Hubble Frontier Fields (HFF). Specifically, we study an re=4030+70r_e = 40^{+70}_{-30}pc, M108.2MM_{\star} \sim 10^{8.2} M_{\odot} rest-frame ultra-violet luminous "clump" at a projected distance of \sim100~pc from a M109.8M_{\star} \sim 10^{9.8}M_{\odot} galaxy at z=2.36z = 2.36 with a magnification μ=5.21\mu = 5.21. We measure the star formation history of the clump and galaxy by jointly modeling the broadband spectral energy distribution from HST photometry and Hα\alpha from MOSFIRE spectroscopy. Given our inferred properties (e.g., mass, metallicity, dust) of the clump and galaxy, we explore scenarios in which the clump formed \emph{in-situ} (e.g., a star forming complex) or \emph{ex-situ} (e.g., a dwarf galaxy being accreted). If it formed \emph{in-situ}, we conclude that the clump is likely a single entity as opposed to a aggregation of smaller star clusters, making it one of the most dense star clusters cataloged. If it formed \emph{ex-situ}, then we are witnessing an accretion event with a 1:40 stellar mass ratio. However, our data alone are not informative enough to distinguish between \emph{in-situ} and \emph{ex-situ} scenarios to a high level of significance. We posit that the addition of high-fidelity metallicity information, such as [OIII]4363\AA, which can be detected at modest S/N with only a few hours of JWST/NIRSpec time, may be a powerful discriminant. We suggest that studying larger samples of moderately lensed sub-structures across cosmic time can provide unique insight into the hierarchical formation of galaxies like the Milky Way.Comment: Accepted to MNRA

    The MOSDEF survey: a stellar mass-SFR-metallicity relation exists at z2.3z\sim2.3

    Full text link
    We investigate the nature of the relation among stellar mass, star-formation rate, and gas-phase metallicity (the M_*-SFR-Z relation) at high redshifts using a sample of 260 star-forming galaxies at z2.3z\sim2.3 from the MOSDEF survey. We present an analysis of the high-redshift M_*-SFR-Z relation based on several emission-line ratios for the first time. We show that a M_*-SFR-Z relation clearly exists at z2.3z\sim2.3. The strength of this relation is similar to predictions from cosmological hydrodynamical simulations. By performing a direct comparison of stacks of z0z\sim0 and z2.3z\sim2.3 galaxies, we find that z2.3z\sim2.3 galaxies have 0.1\sim0.1 dex lower metallicity at fixed M_* and SFR. In the context of chemical evolution models, this evolution of the M_*-SFR-Z relation suggests an increase with redshift of the mass-loading factor at fixed M_*, as well as a decrease in the metallicity of infalling gas that is likely due to a lower importance of gas recycling relative to accretion from the intergalactic medium at high redshifts. Performing this analysis simultaneously with multiple metallicity-sensitive line ratios allows us to rule out the evolution in physical conditions (e.g., N/O ratio, ionization parameter, and hardness of the ionizing spectrum) at fixed metallicity as the source of the observed trends with redshift and with SFR at fixed M_* at z2.3z\sim2.3. While this study highlights the promise of performing high-order tests of chemical evolution models at high redshifts, detailed quantitative comparisons ultimately await a full understanding of the evolution of metallicity calibrations with redshift.Comment: 19 pages, 8 figures, accepted to Ap

    The MOSDEF Survey: Kinematic and Structural Evolution of Star-Forming Galaxies at 1.4z3.81.4\leq z\leq 3.8

    Full text link
    We present ionized gas kinematics for 681 galaxies at z1.43.8z\sim 1.4-3.8 from the MOSFIRE Deep Evolution Field survey, measured using models which account for random galaxy-slit misalignments together with structural parameters derived from CANDELS Hubble Space Telescope (HST) imaging. Kinematics and sizes are used to derive dynamical masses. Baryonic masses are estimated from stellar masses and inferred gas masses from dust-corrected star formation rates (SFRs) and the Kennicutt-Schmidt relation. We measure resolved rotation for 105 galaxies. For the remaining 576 galaxies we use models based on HST imaging structural parameters together with integrated velocity dispersions and baryonic masses to statistically constrain the median ratio of intrinsic ordered to disordered motion, V/σV,0V/\sigma_{V,0}. We find that V/σV,0V/\sigma_{V,0} increases with increasing stellar mass and decreasing specific SFR (sSFR). These trends may reflect marginal disk stability, where systems with higher gas fractions have thicker disks. For galaxies with detected rotation we assess trends between their kinematics and mass, sSFR, and baryon surface density (Σbar,e\Sigma_{\mathrm{bar},e}). Intrinsic dispersion correlates most with Σbar,e\Sigma_{\mathrm{bar},e} and velocity correlates most with mass. By comparing dynamical and baryonic masses, we find that galaxies at z1.43.8z\sim 1.4-3.8 are baryon dominated within their effective radii (RER_E), with Mdyn/Mbaryon increasing over time. The inferred baryon fractions within RER_E, fbarf_{\mathrm{bar}}, decrease over time, even at fixed mass, size, or surface density. At fixed redshift, fbarf_{\mathrm{bar}} does not appear to vary with stellar mass but increases with decreasing RER_E and increasing Σbar,e\Sigma_{\mathrm{bar},e}. For galaxies at z2z\geq2, the median inferred baryon fractions generally exceed 100%. We discuss possible explanations and future avenues to resolve this tension.Comment: Accepted to ApJ. Added Figure 9, corrected sample size (main results unchanged). 28 pages, 13 figure

    DISTRIBUTION OF CRAYFISH IN SALZBURG, AUSTRIA

    Full text link

    Simulating (electro)hydrodynamic effects in colloidal dispersions: smoothed profile method

    Full text link
    Previously, we have proposed a direct simulation scheme for colloidal dispersions in a Newtonian solvent [Phys.Rev.E 71,036707 (2005)]. An improved formulation called the ``Smoothed Profile (SP) method'' is presented here in which simultaneous time-marching is used for the host fluid and colloids. The SP method is a direct numerical simulation of particulate flows and provides a coupling scheme between the continuum fluid dynamics and rigid-body dynamics through utilization of a smoothed profile for the colloidal particles. Moreover, the improved formulation includes an extension to incorporate multi-component fluids, allowing systems such as charged colloids in electrolyte solutions to be studied. The dynamics of the colloidal dispersions are solved with the same computational cost as required for solving non-particulate flows. Numerical results which assess the hydrodynamic interactions of colloidal dispersions are presented to validate the SP method. The SP method is not restricted to particular constitutive models of the host fluids and can hence be applied to colloidal dispersions in complex fluids
    corecore