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ABSTRACT
Cooperative games are a useful framework for modeling multi-
agent behavior in environments where agents must collabo-
rate in order to complete tasks. Having jointly completed a
task and generated revenue, agents need to agree on some
reasonable method of sharing their profits. One particularly
appealing family of payoff divisions is the core, which con-
sists of all coalitionally rational (or, stable) payoff divisions.
Unfortunately, it is often the case that the core of a game
is empty, i.e. there is no payoff scheme guaranteeing each
group of agents a total payoff higher than what they can get
on their own.

As stability is a highly attractive property, there have been
various methods of achieving it proposed in the literature.
One natural way of stabilizing a game is via taxation, i.e.
reducing the value of some coalitions in order to decrease
their bargaining power. Existing taxation methods include
the ε-core, the least-core and several others.

However, taxing coalitions is in general undesirable: one
would not wish to overly tamper with a given coalitional
game, or overly tax the agents. Thus, in this work we study
minimal taxation policies, i.e. those minimizing the amount
of tax required in order to stabilize a given game. We show
that games that minimize the total tax are to some extent a
linear approximation of the original games, and explore their
properties. We demonstrate connections between the mini-
mal tax and the cost of stability, and characterize the types
of games for which it is possible to obtain a tax-minimizing
policy using variants of notion of the ε-core, as well as those
for which it is possible to do so using reliability extensions.
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1. INTRODUCTION
The theory of cooperative games with transferable utility
(TU games) has been widely used in multi-agent systems to
study scenarios where groups of agents may form coalitions
and generate profits. Formally, a TU cooperative game G is
given by a set of agents N = {1, . . . , n} and a characteristic
function v : 2N → R, assigning a value to each subset S ⊆ N .
It is often assumed that agents will form the grand coalition,
i.e. the set of all agents N . However, in some cases agents
may form coalition structures [1]; that is, agents split into
disjoint coalitions, working independently in order to max-
imize total revenue. Our focus is on the former approach,
where the grand coalition is formed.1

Having formed the grand coalition, agents must decide
on some reasonable payoff division. Payoff division schemes
are known in the literature as solution concepts (see [14]
and [5] for a review of common solution concepts); a solution
concept is a mapping whose input is a cooperative game G,
and whose output is a set of payoff divisions. The core [7]
is arguably the most prominent solution concept; a payoff
division is said to be in the core of G (denoted Core(G)) if
no subset of agents can get more by leaving the group and
working on their own, i.e. the total payoff to every subset of
agents S is at least its value v(S). Thereby, core outcomes
capture the notion of stability in cooperative games; this
is because under a core outcome, no subset of agents can
profitably deviate. Unfortunately though, many cooperative
games have an empty core; this means that no matter how
agents divide their profits, there will always be a subset of
agents that is paid less than what it can make on its own.

1.1 Relaxing the Core Requirement
Core stability is a highly desirable, but rarely achievable,
property; thus, one would ideally like to maintain a set of
“somewhat” stable payoffs when the core is empty. This can
be done via several approaches. First, one may drop the
stability requirement and focus on other types of solution
concepts, for which a payoff division is guaranteed to exist.
Such solutions, in particular, include the nucleolus [15] and
the bargaining set [6], and have their own justifications and
appeal: for example, the nucleolus of a cooperative game
is a payoff division scheme that minimizes some measure of
unhappiness in the game.

An alternative approach would be to stabilize the game

1We do not use coalition structures both for the sake of
simplicity and in order to maintain consistency with other
solution concepts, which often do not utilize coalition struc-
tures in their definitions.
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via external subsidies. Intuitively, a game is not stable since
the grand coalition is unable to generate enough revenue to
satisfy the demands of each subset of agents. An external
party that is interested in stabilizing the game provides a
subsidy to the agents if they form the grand coalition, and
thus a value of δv(N) is divided among them, where δ ≥ 1.
Clearly, any game can be stabilized using a large enough δ;
however, the external party would naturally be interested in
the minimal subsidy required in order to stabilize the game.

Finally, a game can be stabilized by relaxing the core con-
straints. For example, it is often reasonable to assume that
a subset of agents would not choose to deviate if the addi-
tional payment they can secure by deviating does not exceed
some ε > 0, i.e. a coalition will choose to deviate only if a
substantial gain can be made by deviating, as deviation it-
self is a costly act. Alternatively, the ε can be thought of
as a tax imposed on a coalition should it choose to deviate;
again, this can be viewed as some external party wishing to
stabilize the game, but doing so via reducing the bargaining
power of subsets of N , rather than increasing the desirabil-
ity of N itself. Formally, given a game G, the game Gε has
the value of every coalition except N reduced by some ε.
It is easy to see that for a large enough ε, the game Gε is
stable. Note that it can also be assumed that ε < 0; that is,
if the game is stable, it may be possible to add a value of ε
to the value of each coalition S ⊆ N (except N itself), thus
increasing the bargaining power of sub-coalitions. Since our
focus in this work is on stabilizing games whose cores are
empty, we assume from now on that ε ≥ 0. Again, we are
interested in the smallest possible ε for which Gε is stable, as
that minimal ε corresponds to the minimal change required
in order to stabilize the game via ε reductions. This gives
rise to the notion of the strong least core, which corresponds
to the ε∗-core where ε∗ is the smallest value for which the
game Gε∗ has a non-empty core. Variants of the strong-ε
core exist, each corresponding to a different method of tax-
ation (see Section 2 for a more detailed discussion).

The study of taxation as a method of stabilizing coop-
erative games is not recent; these notions have been first
explored in [9], where the geometry of the least core and
its connection to the nucleolus and other solution concepts
have been established. More recently, Bejan and Gómez [4]
study the properties of individual taxation schemes. Specif-
ically, given a game G, they consider various ways in which
an individual taxation scheme (i.e. a mapping from a game
to a vector in Rn) can stabilize a game, and explore their
properties. Moreover, Bejan and Gómez show a connection
between an optimal individual taxation scheme (i.e. one
that minimizes the total amount of tax taken from individ-
uals) and the cost of stability (i.e., the minimal subsidy to
the value of the grand coalition required in order to stabi-
lize the game). The goal of their work is to provide axioms
which would hold for those taxation schemes that coincide
with the core whenever the core is not empty, i.e. taxation
schemes that do not tax individuals at all if the game is
stable to begin with. In this sense, our approach is similar:
the taxation notion we propose results in the core if this is
not empty. However, unlike Bejan and Gómez, we study
group taxation schemes, where the value of each coalition
is reduced by a certain value, until the resulting game is
stable. As we demonstrate, taking this approach results in
significantly lower taxes for coalitions.

Also in this line of work, Gonzales and Grabisch [8] study a

generalization of the extended core proposed by Bejan and
Gómez [4], where a tax is only employed on coalitions of
size at most k. Specifically, they look for games that min-
imize the difference between a group taxation scheme and
an individual taxation scheme. The reasoning behind this
methodology is simple: when a tax (or a payoff) is set upon
sets rather than individuals, the sets of agents must bargain
among themselves in order to agree on the way in which the
tax should be divided. Thus, studying group taxation that
minimizes the number of taxes on sets makes sense, as it
minimizes the amount of complicated bargaining that the
agents must undergo. In contrast, in our setting, we do not
address the way in which taxes are distributed among sub-
coalition members; rather, our results show that individual
taxation does naturally arise in the setting that we propose.
In the class of games that we study, the value of a blocking
coalition is replaced by a value set by an additive vector,
whose coordinates induce an individual tax.

Independent of the previous work, Bachrach et al. [2]
study the cost of stability in coalitional games. The cost of
stability is the minimal external subsidy to the grand coali-
tion that is required in order to stabilize a given cooperative
game. The authors [2] provide bounds on the amount of
subsidy required for various classes of cooperative games.
Additional bounds have been recently provided by Meir et
al. [10] and Meir et al. [11]. In our work, we provide an ex-
plicit upper bound for the class of superadditive, anonymous
games, and explore its connection to the bound presented
in [2] for the same class. We show that for small enough
coalitions (namely, those whose size is at most n

2
), an opti-

mal taxation policy is guaranteed to impose a lower tax than
that used when computing the cost of stability; moreover,
we show a relation between the amount of savings induced
and the size of a coalition, with smaller coalitions guaran-
teed better tax reductions than larger coalitions. This result
is particularly appealing, as it is often assumed that smaller
coalitions are likelier to form than larger ones, thus ensuring
a low tax on such coalitions is paramount.

As can be seen, the cost of stability, the least core, the
concepts studied by Bejan & Gomez [4] and Gonzales &
Grabisch [8] are aimed at finding the minimal amount of
change required to stabilize a given cooperative game G.
We continue in this line of work, with the aim of finding
the minimal amount of taxation required in order to achieve
core stability.

1.2 Our Contribution
Against this background, we analyze scenarios where min-
imal taxation is employed in order to achieve stability in
cooperative games. In particular, given a cooperative game
G, we examine the set of all stable cooperative games that
are dominated by G, i.e. their characteristic functions give
a lower value to each coalition S ⊆ N . These games include
all games that correspond to the ε-core of G and, in par-
ticular, the game corresponding to the least-core of G, the
notions described by Bejan and Gómez, and other notions
such as graph restrictions [12] and reliability extensions [3].

We then proceed to look at the set of games on the effi-
cient face of the polytope of stable games dominated by G.
We give a complete characterization of these games, which
we term maximal-stable games; briefly, one can construct a
maximal-stable game by replacing the value of every block-
ing coalition (i.e. one violating the core constraints) by a
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value induced by an additive taxation scheme. We explore
the connections between the minimal possible tax required
in order to stabilize a cooperative game and the cost of sta-
bility, both additive and relative. In particular, for the class
of superadditive, anonymous cooperative games we provide
an explicit formulation of a taxation policy, as well as a guar-
anteed improvement as opposed to the individual taxation
scheme induced by the cost of stability. Finally, we char-
acterize the types of games for which the cooperative game
induced by the least-core is maximal-stable, as well as games
whose reliability extension [3] is maximal-stable.

1.2.1 Organization
The paper unfolds as follows. Section 2 contains necessary
definitions and preliminary results. In Section 3, we define
and characterize maximal-stable games. We discuss their re-
lations with the cost of stability in Section 4, and compare
worst-case optimal taxation with that used in [2] for anony-
mous games in Section 5. We then describe classes of games
for which the taxation schemes induced by variants of the
ε-core (Section 6) and the reliability extension (Section 7)
are optimal. Finally, Section 8 concludes with directions for
future work.

2. PRELIMINARIES
In this section, we provide necessary notation and define con-
cepts needed for presentation of our results in the following
sections.

2.1 Basic Definitions
A cooperative game with transferable utility (TU game) is a
tuple G = 〈N, v〉, where N = {1, . . . , n} is the set of agents
and v : 2n → R+ is the characteristic function of G, which
assigns a value to each coalition S ⊆ N . It is assumed that
G is non-negative, i.e. v(S) ≥ 0 for all S ⊆ N , and that
v(∅) = 0. Alternatively, a cooperative game can be viewed

as a vector in R2n

+ , where the value of the set S corresponds
to the coordinate whose binary encoding has 1 in its i-th bit
if i ∈ S, and 0 otherwise.

A cooperative game G is called monotone if for all S ⊆
T ⊆ N we have that v(S) ≤ v(T ); it is superadditive if for
all S, T ⊆ N such that S∩T = ∅ we have that v(S)+v(T ) ≤
v(S ∪ T ), and additive if the latter holds with equality. We
say that a game G is anonymous if the value of a coalition
does not depend on the identity of its member agents; i.e.
if there exists some f : N → R such that for all S ⊆ N we
have that v(S) = f(|S|).

Throughout the paper, vectors are written as boldface
lowercase letters and sets of agents are written as upper-
case letters. Given a vector x ∈ Rn and a set S ⊆ N , we
write x(S) =

∑
i∈S x

i. A payoff division is a vector x ∈ Rn+,

where xi is the payment to agent i. We say that x is ef-
ficient if x(N) = v(N), i.e. the total payoff to all agents
equals the value of the grand coalition N . We say that x
is individually rational if for all i ∈ N , xi ≥ v({i}), i.e. if
every agent receives at least what he can make on his own.
A vector x ∈ Rn is called an imputation if it is both efficient
and individually rational. We denote the set of imputations
over G by Imp(G).

The core of a cooperative game G = 〈N, v〉 is the set of
all imputations x ∈ Imp(G) such that for all S ⊆ N it holds
that x(S) ≥ v(S). We denote the core of G by Core(G).

As mentioned in Section 1 and as the following example
illustrates, it is possible that the core is empty: Core(G) = ∅.

Example 1. Consider the three-majority game where N =
{1, 2, 3} and the value of every S ⊆ N is 1 if |S| ≥ 2 and is
0 otherwise. In this case, we have that Core(G) = ∅. Indeed,
consider an imputation x ∈ Imp(G). Since x(N) = v(N) =
1, there is some agent i ∈ N whose payoff is greater than
zero. This means that x(N \ {i}) = 1 − xi < 1; however,
|N \{i}| = 2, so v(N \{i}) = 1, and hence x /∈ Core(G). We
observe that the three-majority game is superadditive, thus
superadditivity is not a sufficient (nor, indeed, necessary)
condition for core non-emptyness.

If Core(G) 6= ∅ then there is a way to distribute the profits
among the agents so that no subset of them has an incentive
to deviate from the grand coalition and work on their own.
Thus, we refer to games with a non-empty core as stable.

2.2 Dominated Games
For each game G, we are interested in the particular set of
stable games it defines, as follows.

Definition 2. Given a game G = 〈N, v〉 and a game
G′ = 〈N, v′〉, we say that G dominates G′ if for all S ⊆ N
we have v(S) ≥ v′(S); if G dominates G′, we write G′ ≤ G.
The dominated stable set of G, S(G), is the set of all stable
games dominated by G; that is,

S(G) = {G′ ∈ R2n | G′ ≤ G,Core(G′) 6= ∅}.

The set S(G) can be viewed as the result of the following pro-
cess. Suppose a given game G is unstable; however, the game
can be stabilized by reducing the value of certain coalitions.
For example, a central authority may reduce the value of cer-
tain coalitions via taxation or fines; alternatively, once the
grand coalition is formed, other (unformed) sub-coalitions
suffer an erosion in their value as time goes by.

Some common solution concepts can be viewed as taxation
schemes; we now describe those relevant to our work.

2.2.1 The Least Core and Relative Least Core
The ε-core [9] is an example of taxation where all coalitions
suffer equal depreciation, i.e. a uniform value of ε is re-
moved from each coalition. We note that while the value
of each coalition is depreciated by ε, the total payoff di-
vided is still v(N), which motivates the following definition.
Given a cooperative game G = 〈N, v〉 and an ε > 0, the
game Gε = 〈N, vε〉 is defined as follows: vε(N) = v(N),
but vε(S) = v(S) − ε for all S ( N . Clearly, there is
some ε > 0 for which Core(Gε) 6= ∅; the game induced
by the least core [9] corresponds to the smallest such ε, de-
noted ε∗. One can similarly define the relative ε-core us-
ing vrel(ε)(S) = εv(S), i.e. instead of taxing coalitions via
lump-sum taxation, we take a proportional share of every
coalition’s value. Finally, the weak ε-core is defined via
vw(ε) = v(S)− |S|ε. That is, each agent i ∈ N is charged a
value of ε should he choose to join a deviating coalition.

2.2.2 Reliability Extensions
Given a game G = 〈N, v〉 and a vector r ∈ [0, 1]n, the reli-
ability extension of G by r is given by Gr = 〈N, vr〉, where
vr(S) =

∑
C⊆S v(C)

∏
j∈C r

j∏
k∈S\C(1− rk). The idea be-

hind these games is that given a cooperative game, every
agent i ∈ N may fail with probability 1 − ri, and survive
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with probability ri. Thus, vr(S) is the expected value of
the coalition S. These games have been studied in [3], and
are similar in nature to multilinear extensions [13]. We note
that if we assume that G is monotone, then vr(S) ≤ v(S) for
all S ⊆ N ; moreover, one can apply the reliability extension
only to strict subsets of N , leaving the value of N under vr
as v(N). This makes reliability extensions consistent with
the notion of taxation: for each agent i ∈ N , there is some
probability ri that he will be removed from the game if he
decides to join a deviating coalition. This makes the value
of a deviating coalition S simply its expected value given the
probability of agents in S being removed from the game.

3. MAXIMAL-STABLE GAMES
In this section, we analyze what we term maximal-stable
games, which are defined as maximal elements of the domi-
nated stable set, under the dominance relation.

Definition 3. A game G∗ in the dominated stable set
S(G) is called maximal-stable if there is no game G′ ∈ S(G)
such that G∗ ≤ G′ and G′ 6= G∗.

Maximal-stable games are those games for which no coali-
tion’s value can be increased without either breaking the
dominance condition (i.e. the value of the coalition S under
G∗ equals the value of S under G), or the stability condition
(i.e., for any ε > 0, there is no way to stabilize the game
induced by increasing the value of S under G∗ by ε). These
are games for which the total reduction in coalitions’ value is
minimal. In a sense, they represent locally optimal taxation
schemes; they reduce the value of coalitions in the minimal
possible manner, while preserving stability. As we show be-
low, such optimal taxation schemes will never reduce the
value of the grand coalition.

Proposition 4. If G∗ = 〈N, v∗〉 is a maximal-stable game
in S(G), then v∗(N) = v(N).

Proof. Suppose by the contrary that v∗(N) < v(N).
Since Core(G∗) 6= ∅, there is some x ∈ Core(G∗). Let G′ =
〈N, v′〉 be defined as follows: ∀S ( N , v′(S) = v∗(S), and
v′(N) = v(N). Moreover, let y ∈ Rn be defined as follows:

yi = xi +
v(N)− v∗(N)

n
.

Since yi > xi for all i ∈ N , we have that y(S) > x(S) ≥
v∗(S) = v′(S) for all S ( N . Furthermore, y(N) = x(N) +
v(N) − v∗(N) = v(N), and thus y is in the core of G′. We
conclude that Core(G′) 6= ∅, G∗ ≤ G′ ≤ G, and G′ 6= G∗;
hence, G∗ is not maximal-stable—a contradiction.

Proposition 4 asserts that in any maximal-stable game the
value of the grand coalition need not be reduced; essentially,
this means that while the bargaining power of the agents is
reduced, their social welfare is not: their total payoff is the
same as what they would have received under G. Further-
more, as the following propositions demonstrate, maximal-
stable games are in some sense an additive approximation
of the original game G.

Proposition 5. If G∗ is maximal-stable, then for all S ⊆
N and all x ∈ Core(G∗), x(S) > v∗(S)⇔ v∗(S) = v(S).

Proof. We know that if x ∈ Core(G∗) then x(S) ≥ v∗(S)
for all S ⊆ N . Now, if there is some S′ ⊆ N such that

x(S′) > v∗(S′) but x(S′) ≤ v(S′), we can create the game
G′ = 〈N, v′〉 such that v′(S) = v∗(S) for all S 6= S′ and
v′(S′) = x(S′). Note that G′ is stable (in particular, x ∈
Core(G′)), which contradicts the fact that G∗ is maximal-
stable. Finally, if x(S′) > v(S′) > v∗(S′), we can define the
game G′ to be v′(S) = v∗(S) for all S 6= S′, and v′(S′) =
v(S′) for S′. Again, G′ ≥ G∗ and G′ 6= G∗, and G′ is stable
(x ∈ Core(G′))—a contradiction.

We use Proposition 5 to prove the following claim.

Proposition 6. For any x,y ∈ Core(G∗), if for some
S ⊆ N it holds that x(S) < v(S), then y(S) = x(S) = v∗(S).

Proof. Since x(S) < v(S), by Proposition 5, x(S) =
v∗(S); if y(S) ≤ v(S) then y(S) = v∗(S) as well, and
we are done. Now, suppose y(S) > v(S); since x(S) =
v∗(S) < v(S), then again by Proposition 5, it is impos-
sible that y(S) > v(S) > v∗(S). Thus, it must be that
y(S) = v∗(S) = x(S) This completes the proof.

Propositions 5 and 6 imply that a maximal-stable game
G∗ = 〈N, v∗〉 is defined by the original game G and some
imputation x ∈ Imp(G), such that v∗(S) = min{v(S), x(S)}
for all S ⊂ N . Some subsets of N are allowed to keep their
original bargaining power, i.e. v∗(S) = v(S), whereas some
subsets have their bargaining power reduced via some ad-
ditive measure x so that v∗(S) = x(S) < v(S). This can
be thought of as follows: agents are paid according to some
x ∈ Imp(G); if x /∈ Core(G) then blocking coalitions have
their value set to x(S), which entails stability. A game is
maximal-stable if no coalition had its value unjustly reduced.
Indeed, one can view a maximal-stable game as an additive
game, but with some of the strict subsets of N having re-
duced values. Note that Proposition 6 does not imply that
the vector x is unique; for that to hold, Proposition 6 must
hold on all singleton coalitions, which may well not be the
case. That is, despite being very close to being additive, the
core of a maximal-stable game is not necessarily a singleton,
as the following example illustrates.

Example 7. Consider a game G = 〈N, v〉 defined with
N = {1, . . . , 4}, v({1, 2}) = 1, v({3, 4}) = 4, v(N) = 4
and v(S) = 0 for the rest of the coalitions. It is easy to
see that G is not stable. However, reducing the value of
v({3, 4}) to 3 will stabilize the game. Under the new game,
core outcomes are all vectors of the form x = (x1, x2, x3, x4)
where x1 + x2 = 1 and x3 + x4 = 3.

However, Proposition 6 does imply that if the imputation
generating the maximal-stable game is not unique, then, in-
tuitively, individual bargaining power is low: for all i ∈ N
the values of the singleton coalitions need not to be changed.
In such scenarios, individuals have their bargaining power re-
duced by taxation when they form coalitions, but the actual
tax they incur does not come into play and does not af-
fect their individual bargaining power. We do mention that
for some games (e.g. strictly subadditive games), individual
bargaining power may be reduced due to low non-singleton
coalition values.

We observe that while there may be different individ-
ual taxation schemes that lead to identical maximal-stable
games, the cores that they induce never coincide. Further-
more, an immediate corollary of Proposition 6 is that the
cores of different maximal-stable games are disjoint.
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Proposition 8. Given two maximal-stable games G∗ and
G′ over G, either Core(G∗) ∩ Core(G′) = ∅ or G′ = G∗.

Proof. Assume there is some x ∈ Core(G∗) \ Core(G′).
Since x ∈ Core(G∗) but is not in the core of G′, there
is some set T ⊆ N such that v∗(T ) ≤ x(T ) < v′(T );
since v′(T ) ≤ v(T ), it must be the case that x(T ) < v(T ).
By Proposition 6, for all y ∈ Core(G∗) it must hold that
x(T ) = y(T ), which implies that for all y ∈ Core(G∗) we
get y(T ) < v′(T ); hence, we have that y /∈ Core(G′) for all
y ∈ Core(G∗).

Now, suppose that Core(G′) = Core(G∗). We write C =
Core(G′) = Core(G∗). Consider a set S ⊆ N ; if there is some
x ∈ C such that x(S) > v′(S) then x(S) > v∗(S) as well,
and we have that v′(S) = v∗(S) = v(S). A similar argument
shows that if there is some x ∈ C such that x(S) > v∗(S)
then v′(S) = v∗(S) = v(S). Now, if for all x ∈ C neither
of the above holds, then trivially we have v′(S) = v∗(S) =
x(S). This completes the proof.

Finally, we note that a game G indeed may induce several
maximal-stable games.

Example 9. Consider again the 3-majority game. It is
easy to check that reducing the value of any coalition of size
2 to 0 generates a maximal-stable game. Also, setting the
value of all coalitions of size 2 to 2

3
generates a maximal-

stable game. In the former case, let i ∈ {1, 2, 3} be the agent
that is in both coalitions of size 2 that retain a value of 1;
the imputation y where yj = 0 if j 6= i and yi = 1 is the one
inducing the maximal stable game. For the latter case, the
imputation ( 1

3
, 1
3
, 1
3
) induces the maximal-stable game.

Using these observations, we now formulate a linear pro-
gram to find maximal-stable games of a given game G.

3.1 LP formulation
Maximal-stable games reduce the values of coalitions in or-
der to achieve stability; however, there are several possible
maximal-stable games, and it is possible that some games
achieve stability by taxing more than others. We are inter-
ested in finding maximal-stable games whose total reduction
is minimal (or, in other words, those that generate maximal
overall coalitional value). That is, we wish to find maximal-
stable games that do not differ by much from the origi-
nal game. One possible measure is finding maximal-stable
games whose distance from the original game is minimal (as
measured according to some norm). Using the maximum-
norm as our measure, we obtain the following LP:

max:
∑
S⊆N US (1)

s.t. US ≤ v(S) ∀S ⊆ N
US − x(S) ≤ 0 ∀S ⊆ N
x(N) = v(N)

xi ≥ 0 ∀i ∈ N

In LP (1) above, the first set of constraints are dominance
constraints, the second are stability constraints, and the last
is an efficiency constraint. Note that we can assume with
no loss of generality that US are unconstrained: the dom-
inance and stability constraints simply state that US ≤
min{x(S), v(S)}, both non-negative values. If there is some
set T ⊆ N for which UT < 0, we can set UT = min{x(T ), v(T )}
and get a better solution; thus in any optimal solution all
US are non-negative.

We first demonstrate that solutions to the above optimiza-
tion problem define maximal-stable games.

Proposition 10. Let ((U∗S),x∗) be an optimal solution
to LP 1. Then, the game G∗ = 〈N, v∗〉 where v∗(S) = U∗S
for all S ⊆ N , is maximal-stable.

Proof. Given an optimal solution ((U∗S),x∗) to LP (1),
suppose that the game G∗ defined by v∗(S) = U∗S , S ⊆ N ,
is not maximal-stable. In particular, this means that there
exists some coalition T and some ε > 0 such that increasing
the value of T by ε results in a stable game dominated by G.
This game, along with one of its core imputations, defines a
feasible solution to LP 1, thus contrudicting the assumption
that ((U∗S),x∗) is an optimal solution.

4. MAXIMAL-STABLE GAMES AND THE
COST OF STABILITY

As previously mentioned, another common approach to sta-
bilize a cooperative game is by increasing the desirability
of the grand coalition via external subsidies, rather than
reducing the bargaining power of its subsets by taxation.
Formally, given a game G = 〈N, v〉, one may subsidize the
grand coalition up to the value of v̄(N) = v(N) + ∆ for
∆ ≥ 0 (or, v̄(N) = δv(N) for δ ≥ 1) so that the result-
ing game Ḡ = 〈N, v̄〉, where v̄(S) = v(S) for all S ( N , is
stable. The smallest value of ∆ (respectively, δ) for which
the stability is achieved, defines the additive (respectively,
relative) cost of stability.

It was shown by Bejan and Gómez [4], that the additive
cost of stability equals the total tax required in order to sta-
bilize a game, when one implements a taxation policy which
taxes individuals rather than sets. We now turn to consider
the relation between the cost of stability and maximal stabil-
ity in the general setting with coalitional taxation schemes,
as defined in Section 3. To this end, we utilize LP duality
in order to draw similarities between the two problems.

Let us first rewrite LP (1) as an equivalent minimization
problem for finding an optimal taxation scheme, i.e. the
minimal amount that needs to be deducted from each coali-
tional value as per G. We just set tS = v(S)− US and get:

min:
∑
S⊆N tS (2)

s.t. x(S) + tS ≥ v(S) ∀S ⊆ N
x(N) = v(N)

tS , x
i ≥ 0 ∀S ⊆ N,∀i ∈ N

Bejan and Gómez [4] employ individual, rather than coali-
tional, taxation: that is, in their work, a taxation scheme is
given by a vector t = (t1, . . . , tn), and they seek to minimize
the total sum of individual taxes, t(N) =

∑
i∈S t

i. The tax
on a coalition S is simply the sum of individual taxes over
the members of the coalition: that is, tS = t(S) =

∑
i∈S t

i,
except for the grand coalition on which the authors impose
zero tax. The important result of [4] is that if t∗ is a minimal
taxation scheme, then the cost of stability equals t∗(N).

Our setting is strictly more general than that of Bejan and
Gómez [4]: we employ combinatorial rather than additive
taxes, i.e. tS need not to be equal to t(S). Furthermore,
our objective function is also different: we are interested
in minimizing the total amount of tax from all coalitions,
rather than from individuals. Recall from Proposition 4 that
tN = 0, and so

∑
S⊆N tS =

∑
S(N tS . This finally implies
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that the optimal value of LP (2) is bounded from above by∑
S(N t(S) =

∑n
i=1

∑
S 6=N :i∈S t

i = (2n−1 − 1)t(N), for any
feasible individual taxation scheme t. Thus, given the result
in [4], the value of our optimal taxation scheme is at most
(2n−1−1) times the cost of stability, which, in turn, is given
by the following LP:

min: (2n−1 − 1)t(N) (3)

s.t. x(S) + t(S) ≥ v(S) ∀S ⊆ N
x(N) = v(N)

ti, xi ≥ 0 ∀i ∈ N

Let us now observe the duals of the linear programs above.
For LP (2) we get the following problem:

max:
∑
S⊆N

βSv(S)− γv(N) (4)

s.t. 0 ≤ βS ≤ 1 ∀S ⊆ N∑
S:i∈S βS ≤ γ ∀i ∈ N

and the dual of LP (3) is given by:

max:
∑
S⊆N

βSv(S)− γv(N) (5)

s.t.
∑
S:i∈S βS ≤ 2n−1 − 1 ∀i ∈ N∑

S:i∈S βS ≤ γ ∀i ∈ N
βS ≥ 0 ∀S ⊆ N

Thus, instead of requiring that each βS will be at most 1, as
in LP (4), only a general bound on the total weight of the
variables βS is required in LP (5). In particular, if LP (5)
has an optimal solution where all βS are at most 1, then the
cost of stability (normalized by 2n−1−1) equals the amount
deducted by an optimal taxation policy, i.e. an individual
taxation scheme will also be an optimal taxation scheme.

5. OPTIMAL TAXATION IN ANONYMOUS
GAMES

In this section, we compute optimal taxation policies for
the special case of anonymous cooperative games; further-
more, we show that in the case of superadditive, anonymous
games, small coalitions enjoy a significant reduction in their
taxation under an optimal taxation policy.

Recall that a cooperative game G = 〈N, v〉 is anonymous
if there exists some function f : N → R such that for all
S ⊆ N we have that v(S) = f(|S|). As we have previously
shown, an optimal taxation policy is completely defined by
an imputation vector x, and the maximal-stable game it
induces has v∗(S) = min{x(S), v(S)}. Given a vector x ∈
Rn, let xij be the vector x with the i-th and j-th coordinates
swapped. We first make the following observation:

Observation 11. Given an anonymous game G = 〈N, v〉,
if x induces a maximal-stable game, then for any i, j ∈ N ,
xij induces a maximal-stable game.

Now, observe the set of imputations corresponding to opti-
mal solutions of LP (2); this is a convex set [16], thus if x,y
induce optimal taxation policies, so does any linear combi-
nation of them. In particular, this implies the following:

Lemma 12. If G is an anonymous cooperative game with

v(S) = f(|S|), then the imputation vector e where ei = f(n)
n

for all i ∈ N , induces an optimal taxation policy.

Proof. To see why this is the case, take a vector z such
that the function D(x) =

∑n
i=1

∑n
j=1 |x

i − xj | is minimized

over the set of vectors inducing optimal solutions to LP (2).

Suppose that there are some i∗, j∗ ∈ N such that zi
∗
> zj

∗
.

Observe the vector y =
z+zi∗j∗

2
. Since the set of optimal

solution s is convex, and since zi∗j∗ induces an optimal so-
lution as well, y induces an optimal solution. However, we
have that D(z)−D(y) = 2|zi

∗
− zj

∗
| > 0, hence z does not

minimize the function D(x), a contradiction.

Using Lemma 12, we can now provide an explicit formulation
for an optimal taxation policy for anonymous games.

Theorem 13. Let G be an anonymous cooperative game
with v(S) = f(|S|). Then, taxing each set S ⊆ N of size s
by tS = max{0, f(s)− s

n
f(n)} is optimal.

Proof. The theorem follows directly from Lemma 12 and
Proposition 5, stating that the value of any set S ⊆ N in a
maximal-stable game is given by v∗(S) = min{v(S), x(S)}.
Hence, in the anonymous setting, the tax for a set S of size
s is max{0, v(S)− x(S)} = max{0, f(s)− s

n
f(n)}.

We term the taxation policy presented in Theorem 13 above
the anonymous taxation policy, as it does not differentiate
between coalitions of the same size.

Now, as has been observed by Bachrach et al. [2], if G is
anonymous and superadditive, then f(s) ≤ s

n−sf(n). Hence,
in the optimal taxation policy, the most that a coalition is

taxed is ( s
n−s −

s
n

)f(n), which equals s2

n(n−s)f(n). The au-

thors [2] also provide a (tight) bound on the cost of stability

that is obtained by adding f(n)
n

to each agent’s payoff. Thus,
the total extra amount that is paid to each coalition of size

s is s
n
f(n). Note that s2

n(n−s) ≤
s
n

if and only if s ≤ n
2

,

so large coalitions may be taxed a higher amount under the
optimal taxation policy; to conclude, for coalitions of size
≤ n

2
, the difference between the anonymous taxation policy

and the individual taxation policy is
(

1− s
n−s

)
s
n
f(n).

Now, take some α ∈ (0, 1]; the expression 1− s
n−s is greater

than α if and only if s ≤ 1−α
2−αn. For example, setting α = 1

2

shows that coalitions of size ≤ n
3

enjoy at least 50% less tax
under the optimal taxation policy than under the individual
taxation policy, whose cost equals the cost of stability.

We also note that there may be no difference between op-
timal taxation policies and individual ones, even for anony-
mous, superadditive games. This is the case, for example, in
the three-player majority game; in the three-majority game
we have three agents, and the value of all coalitions of size
≥ 2 is 1, while singletons have a value of 0. This game is
both anonymous and superadditive, and it has a cost of sta-
bility equal to the optimal taxation policy, as it satisfies the
conditions set in Theorem 14 presented in the next section.

6. MAXIMAL-STABLE GAMES AND THE
LEAST CORE

The previous sections have demonstrated that optimal tax-
ation schemes tend to fare better than individual taxation
schemes for rather large classes of games. The purpose of
Sections 6 and 7 is to pursue the other direction: suppose
that a central authority has implemented a taxation scheme
(e.g. the relative least-core); what conditions on the coop-
erative game must hold in order to ensure that this taxation
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scheme is indeed minimizing the total tax required in order
to stabilize the game? In other words, are there meaningful
game classes for which such a taxation scheme does better
than the optimal coalitional taxation scheme?

We begin our analysis with finding conditions for maximal-
stability in games induced by the various notions of the ε-
core described in Section 2.

Theorem 14. If Grel(ε∗) is maximal-stable then one of the
following holds:

1. ε∗ = 1; i.e. Grel(ε∗) = G and G has a non-empty core.

2. there exists a vector x ∈ Rn+ such that for all S ( N
such that v(S) > 0, v(S) = 1

ε∗
∑
i∈S x

i.

Proof. Suppose that Grel(ε∗) is maximal-stable; accord-
ing to Proposition 5, for any x ∈ Core(Grel(ε∗)) and any S ⊆
N we have either x(S) > ε∗v(S) = v(S), or x(S) = ε∗v(S).
Thus, if there is some T ( N such that x(T ) > ε∗v(T ), and
v(T ) > 0, it must be that ε∗ = 1. Otherwise, it must be
that for all S ( N such that v(S) > 0 we have that for any
outcome x in Core(Grel(ε∗)) we have that x(S) = ε∗v(S).
Indeed, this means that for all S ⊂ N such that v(S) > 0,
we have that v(S) = 1

ε∗
∑
i∈S x

i.

Simply put, Theorem 14 means that the least core taxa-
tion scheme is maximal stable only if the game in question
is very simple. Similarly, one can show that the standard
strong least core induces a maximal-stable game if and only
if Core(G) 6= ∅ or there exists some x ∈ Rn such that for all
S ( N we have that v(S) = x(S) + ε∗. Finally, for the weak
least-core, there exists some y ∈ Rn such that v(S) = y(S)
for all S ( N , and the optimal taxation scheme in that case
would be to reduce the value of each S by ε · |S|.

While these observations are not too difficult to come by,
they do show that for most scenarios of interest, optimal
coalitional taxation policies necessarily do better than the
common taxation policies existing in the literature. There-
fore, there is a significant gap that can be closed via the
design of more nuanced taxation schemes.

7. MAXIMAL STABILITY AND THE RELI-
ABILITY EXTENSIONS

In this section, we look at maximal stabiliy vs. reliabil-
ity extension—a method of incorporating uncertainty into
cooperative games. Cooperative reliability games have been
explored by Bachrach et al. [3] and are similar to multilinear
extensions of cooperative games, introduced by Owen [13].
Similarly to Section 6, we focus on the following problem:
given a cooperative game G, what conditions on G must hold
so that there exists some r ∈ [0, 1]n such that the reliability
extension Gr is maximal stable? Theorem 15 below suggests
that games for which there exists a maximal stable reliabil-
ity extension are relatively simple. Namely, these are games
for which any coalition that has a positive value with some
probability (i.e. all its members have some chance of sur-
vival) was additive in the original game.

Theorem 15. If there is some r ∈ [0, 1]n such that Gr
is maximal stable, then there exists some y ∈ Rn such that
for every S ⊆ N for which vr(S) < v(S), and for all i ∈ S
ri > 0, we have that v(S) =

∑
i∈S y

i.

Proof. First note that by Proposition 5, if vr(S) < v(S)
then there is some x ∈ Rn such that vr(S) = x(S). We show

that the claim holds by induction on the size of S. If |S| = 1
then S is a singleton, so vr(S) = riv({i}) = xi, and since

ri > 0 it must be that v({i}) = xi

ri
. Now, given a set S of

size ≥ 2, let us assume that the claim holds for all sets S′

such that |S′| < |S|. Let us take an arbitrary i ∈ S; we can
rewrite vr(S) as

ri
∑

C⊆S\{i}

∏
j∈C

rj
∏

k∈S\{i}\C

(1− rk)v(C ∪ {i})

+(1− ri)
∑

C⊆S\{i}

∏
j∈C

rj
∏

k∈S\{i}\C

(1− rk)v(C)

which equals

ri
∑

C⊆S\{i}

∏
j∈C

rj
∏

k∈S\{i}\C

(1− rk)(v(C ∪ {i})− v(C))

+
∑

C⊆S\{i}

∏
j∈C

rj
∏

k∈S\{i}\C

(1− rk)v(C).

Note that the latter sum is simply vr(S \ {i}), thus vr(S)
equals ri

∑
C⊆S\{i}

∏
j∈C

rj
∏

k∈S\{i}\C
(1− rk)(v(C ∪{i})− v(C))

plus vr(S \ {i}), which is equal to
∑
j∈S\{i}

xi

ri
by induction

hypothesis. Also, by induction hypothesis, we have that for

all C 6= S \ {i}, it must be that v(C ∪{i})− v(C) = xi

ri
. We

add and subtract
∏
j∈S

rj x
i

ri
from the sum, to obtain

∏
j∈S

rj(v(S)−
∑
j∈S

xj

rj
)+ri

∑
C⊆S\{i}

∏
j∈C

rj
∏

k∈S\{i}\C

(1−rk)
xi

ri
.

Observe that for any vector r ∈ [0, 1]n and a subset S ⊆ N
we have

∑
C⊆S

∏
i∈C

ri
∏

j∈S\C
(1− rj) = 1. Thus, the right-hand

summation in the expression above is equal to ri x
i

ri
= xi,

which in addition to vr(S\{i}) equals
∑
i∈S x

i. To conclude,
we have that vr(S) equals

x(S) +
∏
j∈S

rj
(
v(S)−

∑
j∈S

xj

rj

)
.

By assumption, vr(S) = x(S), which immediately implies
that the right-hand expression equals 0; since for all j ∈ S we

have that rj > 0, it must be the case that v(S)−
∑
j∈S

xj

rj
= 0,

which completes the proof.

We note that if there is some i ∈ S such that ri = 0, then
vr(S) = vr(S\{i}); thus, if a reliability extension of a mono-
tone game has ri = 0 for some i ∈ N , then for any coalition S
containing i, it must either be the case that v(S) = v(S\{i})
or that v(S) is some very high value, preventing the stabi-
lization of the game unless it is reduced to 0. To conclude,
the types of cooperative games for which reliability exten-
sions induce optimal taxation schemes are not as trivial as
those induced by the various notions of ε-core; however, they
are mostly additive, with non-additivity implying that the
coalition contains an agent whose presence in a coalition
guarantees significantly higher revenue. This means that
this agent must be consistently excluded from every coali-
tion by setting his survival probability to 0.
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8. CONCLUSIONS AND FUTURE WORK
Optimal taxation schemes are highly desirable when attempt-
ing to stabilize a cooperative game. In this work, we have
shown some properties of games inducing optimal taxation
schemes, as well as their relation to other concepts such
as the cost of stability, the least core and reliability exten-
sions. Specifically, we obsereved that in general, optimal
taxation schemes fare better than minimal individual taxa-
tion schemes, where taxes are taken in a non-combinatorial
manner. As the latter has a strong connection to the cost of
stability (namely, the cost of stability equals the total tax
collected under a minimal individual taxation scheme), we
explore the connection between optimal taxation schemes
and the cost of stability via LP formulations; moreover, in
settings where the underlying game is superadditive and
anonymous, we show that significatly lower taxes (in the
worst case) can be used when implementing an optimal tax-
ation scheme, and show the connection between the tax sav-
ings and the size of coalitions. Finally, we explored the op-
posite direction: rather than comparing optimal taxation
schemes to individual taxation schemes, we ascertained the
types of games for which a given taxation scheme is optimal.
We have found that taxation schemes induced by variants of
the ε-core are optimal only for rather trivial games; however,
a more complicated class of games admits optimal taxes in-
duced by reliability extensions.

Our understanding of optimal taxation schemes is far from
complete. First, the computational complexity of finding an
optimal taxation scheme does not seem to fall into the same
category as that of other problems such as computing the
cost of stability or finding a core element. For example,
while deciding whether a given imputation is in the core of
a game is co-NP complete, this is not the case for maxi-
mal stable games; indeed, in order to decide whether there
exists a taxation policy such that a given imputation is in
the core of the game after the taxation, one would need to
guess a taxation policy, which is an object with no succinct
representation in general. Identifying classes of games for
which computing optimal taxation policies is in P would be
an important step in our understanding of these problems.
However, it is not clear how to do so even if one knows that
the game admits an optimal taxation scheme induced by,
e.g., the reliability extension.

Another issue is the maximal difference between an op-
timal taxation policy and an individual taxation policy as
used to compute the cost of stability. We have completely
characterized games for which least core payments coincide
with optimal taxation policies, and have shown the relation
between the former and the cost of stability. However, it is
not immediately clear what is the worst-case loss incurred by
utilizing an individual taxation as opposed to taxing whole
coalitions. Indeed, we have given partial answers to this
question in our work (namely in Sections 6 and 7), but this
analysis needs completion
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