103 research outputs found

    Age effect on retina and optic disc normal values

    Get PDF
    Purpose: To investigate retinal thickness and optic disc parameters by the Retinal Thickness Analyzer (RTA) glaucoma program in older normal subjects and to determine any age effect. Methods: Subjects over 40 years of age without any prior history of eye diseases were recruited. Only subjects completely normal on clinical ophthalmologic examination and on visual field testing by Humphrey Field Analyzer (HFA) using the SITA 24-2 program were included. A total of 74 eyes from 74 subjects with even age distribution over the decades were enrolled and underwent topographic measurements of the posterior pole and of the optic disc by RTA. The `glaucoma full' program in software version 4.11B was applied. Results: Mean patient age was 59.9 +/- 10.3 years with a range from 40 to 80 years. The only parameter intraocular pressure (IOP) correlated with was retinal posterior pole asymmetry (r=0.27, p=0.02). IOP itself increased significantly with age (r=0.341, p=0.003). Mean defect and pattern standard deviation of the HFA did not correlate with any of the retinal or optic disc measurements. Increasing age correlated significantly with some of the morphologic measurements of the RTA: decreasing perifoveal minimum thickness (r=-0.258, p=0.026), increased cup-to-disc area ratio (r=0.302, p=0.016) and increased cup area (r=0.338 p=0.007). Conclusions: An age effect exists for some of the retina and optic disc measurements obtained by the RTA. Copyright (C) 2005 S. Karger AG, Basel

    The 2020 UV emitter roadmap

    Get PDF
    Solid state UV emitters have many advantages over conventional UV sources. The (Al,In,Ga)N material system is best suited to produce LEDs and laser diodes from 400 nm down to 210 nm—due to its large and tuneable direct band gap, n- and p-doping capability up to the largest bandgap material AlN and a growth and fabrication technology compatible with the current visible InGaN-based LED production. However AlGaN based UV-emitters still suffer from numerous challenges compared to their visible counterparts that become most obvious by consideration of their light output power, operation voltage and long term stability. Most of these challenges are related to the large bandgap of the materials. However, the development since the first realization of UV electroluminescence in the 1970s shows that an improvement in understanding and technology allows the performance of UV emitters to be pushed far beyond the current state. One example is the very recent realization of edge emitting laser diodes emitting in the UVC at 271.8 nm and in the UVB spectral range at 298 nm. This roadmap summarizes the current state of the art for the most important aspects of UV emitters, their challenges and provides an outlook for future developments

    Nature is teaching us to be humble in our quest to measure structure and function in glaucoma

    No full text
    Relationship between structure and function with regard to glaucom
    corecore