161 research outputs found

    Fear of Missing Out and Collegiate Alcohol Use: An Examination of Relationship and Direction

    Get PDF
    Collegiate alcohol abuse is an ongoing problem in the United States (Core Institute, 2014). While there have been numerous investigations into this concern, the precise nature of what motivates alcohol misuse in this population still contains areas of uncertainty. One such area could be the newly identified phenomenon known as Fear of Missing Out (FoMO). Research into FoMO demonstrates it as a motivator for individuals to seek socially rewarding experiences (Przybylski et al., 2013); this characteristic indicates it as a potential risk factor for collegiate alcohol abuse. When considering alcohol’s ubiquitous nature as a social facilitator in college campuses, these trait characteristics raise the concern that college students high in FoMO would be at an elevated risk for alcohol abuse. Therefore, the present study sought to examine the relationship between FoMO and collegiate alcohol use. Specifically, this investigation sought to determine if FoMO predicted how likely an individual was to drink, as well as their levels of alcohol craving. Additionally, this experiment sought to replicate initial demographic characteristics of FoMO, as well as assessing its relationship to individual psychological need satisfaction. Results of the present study did not identify a link between FoMO and self-reported drinking likelihood, but did identify FoMO as a predictor of alcohol craving. Interestingly, additional analyses failed to replicate Przybylski et al.’s (2013) finding that males report higher levels of FoMO than females and also failed to link FoMO to overall psychological need satisfaction. These findings represent several areas for continued investigation

    Optimality criteria without constraint qualications for linear semidenite problems

    Get PDF
    We consider two closely related optimization problems: a problem of convex Semi- Infinite Programming with multidimensional index set and a linear problem of Semidefinite Programming. In study of these problems we apply the approach suggested in our recent paper [14] and based on the notions of immobile indices and their immobility orders. For the linear semidefinite problem, we define the subspace of immobile indices and formulate the first order optimality conditions in terms of a basic matrix of this subspace. These conditions are explicit, do not use constraint qualifications, and have the form of criterion. An algorithm determining a basis of the subspace of immobile indices in a finite number of steps is suggested. The optimality conditions obtained are compared with other known optimality conditions

    Moving forward in circles: challenges and opportunities in modelling population cycles

    Get PDF
    Population cycling is a widespread phenomenon, observed across a multitude of taxa in both laboratory and natural conditions. Historically, the theory associated with population cycles was tightly linked to pairwise consumer–resource interactions and studied via deterministic models, but current empirical and theoretical research reveals a much richer basis for ecological cycles. Stochasticity and seasonality can modulate or create cyclic behaviour in non-intuitive ways, the high-dimensionality in ecological systems can profoundly influence cycling, and so can demographic structure and eco-evolutionary dynamics. An inclusive theory for population cycles, ranging from ecosystem-level to demographic modelling, grounded in observational or experimental data, is therefore necessary to better understand observed cyclical patterns. In turn, by gaining better insight into the drivers of population cycles, we can begin to understand the causes of cycle gain and loss, how biodiversity interacts with population cycling, and how to effectively manage wildly fluctuating populations, all of which are growing domains of ecological research

    ON THE CONNECTIONS BETWEEN SEMIDEFINITE OPTIMIZATION AND VECTOR OPTIMIZATION

    Get PDF
    This paper works out connections between semidefinite optimization and vector optimization. It is shown that well-known semidefinite optimization problems are scalarized versions of a general vector optimization problem. This scalarization leads to the minimization of the trace or the maximal eigenvalue

    An Assay to Monitor HIV-1 Protease Activity for the Identification of Novel Inhibitors in T-Cells

    Get PDF
    The emergence of resistant HIV strains, together with the severe side-effects of existing drugs and lack of development of effective anti-HIV vaccines highlight the need for novel antivirals, as well as innovative methods to facilitate their discovery. Here, we have developed an assay in T-cells to monitor the proteolytic activity of the HIV-1 protease (PR). The assay is based on the inducible expression of HIV-1 PR fused within the Gal4 DNA-binding and transactivation domains. The fusion protein binds to the Gal4 responsive element and activates the downstream reporter, enhanced green fluorescent protein (eGFP) gene only in the presence of an effective PR Inhibitor (PI). Thus, in this assay, eGFP acts as a biosensor of PR activity, making it ideal for flow cytometry based screening. Furthermore, the assay was developed using retroviral technology in T-cells, thus providing an ideal environment for the screening of potential novel PIs in a cell-type that represents the natural milieu of HIV infection. Clones with the highest sensitivity, and robust, reliable and reproducible reporter activity, were selected. The assay is easily adaptable to other PR variants, a multiplex platform, as well as to high-throughput plate reader based assays and will greatly facilitate the search for novel peptide and chemical compound based PIs in T-cells

    On Cones of Nonnegative Quadratic Functions

    Full text link

    TrpC3 Regulates Hypertrophy-Associated Gene Expression without Affecting Myocyte Beating or Cell Size

    Get PDF
    Pathological cardiac hypertrophy is associated with an increased risk of heart failure and cardiovascular mortality. Calcium (Ca2+) -regulated gene expression is essential for the induction of hypertrophy, but it is not known how myocytes distinguish between the Ca2+ signals that regulate contraction and those that lead to cardiac hypertrophy. We used in vitro neonatal rat ventricular myocytes to perform an RNA interference (RNAi) screen for ion channels that mediate Ca2+-dependent gene expression in response to hypertrophic stimuli. We identified several ion channels that are linked to hypertrophic gene expression, including transient receptor potential C3 (TrpC3). RNAi-mediated knockdown of TrpC3 decreases expression of hypertrophy-associated genes such as the A- and B-type natriuretic peptides (ANP and BNP) in response to numerous hypertrophic stimuli, while TrpC3 overexpression increases BNP expression. Furthermore, stimuli that induce hypertrophy dramatically increase TrpC3 mRNA levels. Importantly, whereas TrpC3-knockdown strongly reduces gene expression associated with hypertrophy, it has a negligible effect on cell size and on myocyte beating. These results suggest that Ca2+ influx through TrpC3 channels increases transcription of genes associated with hypertrophy but does not regulate the signaling pathways that control cell size or contraction. Thus TrpC3 may represent an important therapeutic target for the treatment of cardiac hypertrophy and heart failure

    Modelling germ cell development in vitro

    Get PDF
    Germ cells have a critical role in mediating the generation of genetic diversity and transmitting this information across generations. Furthermore, gametogenesis is unique as a developmental process in that it generates highly-specialized haploid gametes from diploid precursor stem cells through meiosis. Despite the importance of this process, progress in elucidating the molecular mechanisms underpinning mammalian germ cell development has been retarded by the lack of an efficient and reproducible system of in vitro culture for the expansion and trans-meiotic differentiation of germline cells. The dearth of such a culture system has rendered the study of germ cell biology refractory to the application of new high-throughput technologies such as RNA interference, leaving in vivo gene-targeting approaches as the only option to determine the function of genes believed to be involved in gametogenesis. Recent reports detailing the derivation of gametes in vitro from stem cells may provide the first steps in developing new tools to solve this problem. This review considers the developments made in modelling germ cell development using stem cells, and some of the challenges that need to be overcome to make this a useful tool for studying gametogenesis and to realize any future clinical application
    corecore