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Abstract

We consider two closely related optimization problems: a problem of convex Semi-
Infinite Programming with multidimensional index set and a linear problem of Semidef-
inite Programming. In study of these problems we apply the approach suggested in our
recent paper [14] and based on the notions of immobile indices and their immobility or-
ders. For the linear semidefinite problem, we define the subspace of immobile indices and
formulate the first order optimality conditions in terms of a basic matrix of this subspace.
These conditions are explicit, do not use constraint qualifications, and have the form of
criterion. An algorithm determining a basis of the subspace of immobile indices in a fi-
nite number of steps is suggested. The optimality conditions obtained are compared with
other known optimality conditions.

Key words. Semi-Infinite Programming (SIP), Semidefinite Programming (SDP), subspace
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1 Introduction

In this paper, we are concerned with convex problems of infinite optimization, namely a problem
of convex Semi-Infinite Programming (SIP) and a linear problem of Semidefinite Programming
(SDP), that are closely related [20].
Semi-Infinite Programming deals with extremal problems that consist in minimization of an
objective function of finitely many variables in a set described by an infinite system of con-
straints. SIP models appear in different fields of modern science and engineering where it is
necessary to simulate a behavior of complex processes whose models contain at least one in-
equality constraint for each value of some parameter (for example, time) varying in a given
compact domain (for references see [9], [10] et al).
In SDP, an objective function is minimized under the condition that some matrix valued func-
tion is positive semidefinite. When the objective function is convex and the matrix valued
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function is an affine combination of some symmetric matrices, we get a convex problem. There
are many applications of SDP models to combinatorial optimization, control theory, approxi-
mation theory, etc. (see [22], [23] et al).
In some cases, a semi-infinite optimization problem can be reduced to a semidefinite problem
(see examples in [20]). In turn, any SDP problem can be written in the form of some SIP
problem. Therefore, it is natural to expect that similar approaches can be used in study of
these two classes of optimization problems.
Optimality conditions for SIP and SDP are of special interest both from theoretical and practical
points of view. In literature, a special attention is devoted to the results that do not need
additional conditions on the constraints, so called constraint qualifications (CQ). For SIP such
optimality conditions were proposed, for example, in [4, 11, 14], and for SDP in [8, 17, 18], and
some other papers.

Let us consider an optimization problem in the form

min c(x) s.t. x ∈ X := {x ∈ Rn : f(x, t) ≤ 0, ∀t ∈ T}, (1)

where T ⊂ Rs is a given index set; c(x), f(x, t) are given functions with x ∈ Rn, t ∈ T . This
problem is a Nonlinear Programming (NLP) problem when the index set T is finite, and is a
SIP problem otherwise.
It was noticed by many authors that CQ may fail for problem (1) in the presence of the
constraints that vanish for any feasible solution (see [2, 7, 8, 15, 21] et al.). In different papers
these constraints are referred to differently. For example, for NLP problems with finite set T ,
they are called ”always binding constraints” in [2], and implicit equality constraints in [8], while
in [21] such constraints are said to form the equality set of constraints. In [7], where convex
semi-infinite systems in the form of the constraints of problem (1) are studied, the indices of the
inequalities that vanish for all feasible values of the decision variable, are called carrier indices.

In [13], the set of indices of always vanishing constraints was considered for linear SIP problems
with one - dimensional index set. In this preprint that was published in Russian, such indices
were called immobile and the notion of the immobile order was introduced for them (in [12],
this term is translated from Russian as motionless degree). The immobile indices were used to
obtain optimality conditions for linear SIP and an algorithm determining these indices together
with their immobility orders was suggested. Later, in [14, 15], this approach was generalized
to convex SIP problems.
To avoid confusion, further in this paper we will use the following definition.

Definition 1 An index t ∈ T is called immobile w.r.t. constraints of problem (1) if f(x, t) = 0
for all feasible x ∈ X.

Given problem (1), it must be noticed that the constraints whose indices are immobile, are
not only differently named, but (that is more important) are used for different approaches to
solving this problem. Thus in [2] and [21], a procedure of regularization of the convex problem
in the form (1) with a finite index set T was suggested. It was shown how the set of immobile
indices can be used to reduce this problem to an equivalent one satisfying the Slater CQ, and
the algorithms determining this set were suggested. The same approach was used in [6] for the
case of problem (1) with infinite index set T . In characterizing the optimality, the authors used
the cone of directions of constancy along the ”equality set” of constraints. The results obtained
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for infinite problems are less constructive, and can be considered mostly as a general abstract
conceptual idea rather than concrete optimality conditions easy to be verified.
In [7], the immobile (carrier) indices were used in study of the facial geometry of convex
semi-infinite systems and the topological properties of their solution sets, in particular, for
characterization of their interior and relative interior. It was proved that in the presence of the
carrier indices the Slater condition is not satisfied, and was showed how these indices can be
used for linear representation of the convex systems.
In [14], the convex infinite problem (1) with a compact index set T ⊂ R was considered
and the immobile indices were used to formulate a new approach to optimality conditions
for SIP. In this approach, the immobility orders of the immobile indices were used as well,
and the new optimality conditions (implicit and explicit) were formulated in terms of the
Lagrange multipliers. Notice here that the importance of such optimality conditions have been
emphasized in [8].

This paper is the first attempt to generalize the results from [14] to the case of the convex
SIP problem with a multidimensional index set T ⊂ Rs, s ≥ 2. One simple example of such
problem is a linear SDP problem. For the latest problem we will introduce a subspace of
immobile indices, using the notion of multidimensional immobile indices in convex SIP. The
subspace of immobile indices will permit us to formulate and prove new optimality conditions
for linear SDP in the form of criterion.
There exists a large number of papers on linear SDP, but the results from [8, 17, 18] approximate
more closely to the aims of our investigation. In the papers mentioned above, so called no
gap dual problems are formulated for linear SDP problems not satisfying the Slater condition.
In [17], a dual problem called an extended Lagrange-Slater dual problem (ELSD), is built.
The constraints of this problem include recursive systems of additional constraints. In [18], a
problem named regularized dual problem (DRP) is considered. It is obtained as a dual to the
regularized primal problem denoted there by (PR). In [18], it is proved that the dual problems
(ELSD) and (DRP), obtained using different approaches, are equivalent and the strong duality
property is guaranteed for both of them. These gap free dual problems permit to formulate new
optimality conditions for linear SDP using the minimal cone of problem (PR) and its polar.
Here we will show that the optimality conditions obtained in this paper using the approach
based on immobile indices are equivalent to the conditions formulated in [17, 18], nevertheless
they have different forms.
The paper is organized as follows. In section 2, we formulate a convex SIP problem with
the multidimensional index set, define the set of immobile indices, and prove that this set is
empty if and only if the Slater type CQs are satisfied. In section 3, we consider a linear SDP
problem and the equivalent convex SIP problem, define the subspace of immobile indices, and
study its properties. Optimality conditions are proved and a simple example is discussed. The
comparison of these optimality conditions with the conditions proposed in [8, 17, 18], is carried
out in section 4. Additionally, we obtain the explicit expressions in terms of the subspace of
immobile indices for certain constructions (such as minimal cone, its polar and others) used in
[17, 18] for formulation of dual SDP problems. In section 5, we describe and justify an algorithm
that determines a basis of the subspace of immobile indices. The final section 6 contains some
conclusions and remarks.
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2 Convex semi-infinite programming problem: immo-

bile indices and constraint qualifications

Consider a convex Semi-Infinite Programming problem in the form

(P ) min
x∈Rn

c(x) (2)

s.t. x ∈ Q, f(x, t) ≤ 0 ∀ t ∈ T, (3)

where Q ⊂ Rn is a convex set, c(x), x ∈ Q, is a convex function, the function f(x, t), x ∈ Q, t ∈
T, is convex w.r.t. x; T ⊂ Rs is a compact index set. Denote by X the feasible set of problem
(2), (3):

X = {x ∈ Q : f(x, t) ≤ 0, ∀t ∈ T}.

Consider the following CQs for constraints (3):

• The constraints (3) satisfy the Slater type condition I if

there exists x̄ ∈ Q such that f(x̄, t) < 0,∀t ∈ T. (4)

• The constraints (3) satisfy the Slater type condition II if

for any index set {ti ∈ T, i = 1, . . . , n+ 1} there exists

a vector x̃ ∈ Q such that f(x̃, ti) < 0, i = 1, . . . , n+ 1.
(5)

Let
τ1, . . . , τn ∈ T (6)

be a set of indices from T . Consider the nonlinear problem

(PD) min
x∈Q

c(x) (7)

s.t. f(x, τi) ≤ 0, i = 1, ..., n.

Under the Slater type CQs, the following proposition can be formulated for the optimal solutions
of problems (P ) and (PD).

Proposition 1 Consider the convex SIP problem (2), (3). Suppose that X ̸= ∅ and let con-
straints (3) satisfy the Slater type condition II. Then there exist indices (6) such that

val(P ) = val(PD), (8)

where val(P ) and val(PD) are the optimal values of the objective functions in problems (2), (3)
and (7) respectively.

To prove Proposition 1, one has to repeat the proof of Proposition 5.105 from [5] replacing the
condition x ∈ Rn by the following one: x ∈ Q with convex Q ⊂ Rn.

According to Definition 1, an index t ∈ T is called immobile w.r.t. constraints (3) if f(x, t) = 0
for all feasible x ∈ X. Denote by T ∗ the set of immobile indices in problem (2), (3):

T ∗ := {t ∈ T : f(x, t) = 0 ∀x ∈ X}.
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Proposition 2 Let X ̸= ∅ in the convex SIP problem (2), (3). Then the following conditions
are equivalent:
CQ1: The constraints (3) satisfy the Slater type condition I.
CQ2: The constraints (3) satisfy the Slater type condition II.
CQ3: The set of immobile indices in problem (2), (3) is empty: T ∗ = ∅.

Proof. Suppose that X ̸= ∅, and note that CQ1 ⇒ CQ3 and CQ1 ⇒ CQ2.

1. Let us prove now that CQ2 ⇒ CQ1. Suppose that constraints (3) satisfy the condition
CQ2 and do not satisfy the condition CQ1. Consider an auxiliary SIP problem

min
(x,xn+1)∈Rn+1

xn+1

(P aux) s.t. f(x, t)− xn+1 ≤ 0 ∀t ∈ T ⊂ Rs,
x ∈ Q, −2 ≤ xn+1 ≤ 2.

(9)

Since X ̸= ∅, there exists x̂ ∈ X and evidently, the vector (x̂, xn+1) with xn+1 = 0, is a
feasible solution for problem (P aux). The objective function in problem (P aux) is limited
and all the functions defining this problem are convex w.r.t. x. Therefore problem (P aux)
admits the optimal value val(P aux) of the objective function and −2 ≤ val(P aux) ≤ 0.
Suppose that val(P aux) < 0. In this case, there exists a vector (x∗, x∗

n+1) such that
x∗ ∈ Q, x∗

n+1 < 0, and f(x∗, t)− x∗
n+1 ≤ 0 for any t ∈ T . Hence f(x∗, t) < 0, t ∈ T , that

contradicts the hypothesis that the condition CQ1 is not satisfied. Thus val(P aux) = 0.

It is easy to verify that the vector (x̂, x̂n+1) with x̂n+1 = 1, is feasible in problem (P aux)
when x̂ ∈ X. By construction, for any t ∈ T we have f(x̂, t) − x̂n+1 < f(x̂, t) ≤ 0 and
−2 < x̂n+1 < 2. Therefore the convex problem (P aux) satisfies the Slater type condition
I and hence the Slater type condition II is satisfied for it as well. Then by Proposition 1
applied to problem (P aux), there exists a set of points {t̄1, . . . , t̄n+1} ⊂ T such that the
optimal value val(P aux) of problem (P aux) is equal to the optimal value val(P aux

D ) of its
discretization (P aux

D ) given by

min
(x,xn+1)∈Rn+1

xn+1

(P aux
D ) s.t. f(x, t̄i)− xn+1 ≤ 0, i = 1, ..., n+ 1,

x ∈ Q, − 2 ≤ xn+1 ≤ 2.

Hence we get val(P aux) = val(P aux
D ) = 0.

On the other hand, from the assumption that the condition CQ2 is satisfied for constraints
(3), we conclude that for the index set {t̄1, . . . , t̄n+1} there exists the vector (x̃, x̃n+1) ∈
Rn+1 such that x̃ ∈ Q, f(x̃, t̄i) − x̃n+1 ≤ 0, i = 1, . . . , n + 1, and −2 < x̃n+1 < 0. Then
(x̃, x̃n+1) is feasible in (P aux

D ) and the corresponding value of the objective function is
equal to x̃n+1 < 0 , which contradicts the equality proved above: val(P aux

D ) = 0. From
the contradiction obtained we conclude that the condition CQ1 is satisfied for problem
(2), (3).

2. Finally, let us prove that CQ3 ⇒ CQ2. Suppose that constraints (3) satisfy the condition
CQ3 and do not satisfy the condition CQ2. Let {t1, . . . , tn+1} ⊂ T be a set of indices
that do not satisfy (5).
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From the condition CQ3 it follows that for every ti ∈ {t1, . . . , tn+1} there exists x(i)∈ X
such that f(x(i), ti) < 0. Hence the following relations take place:

f(x(i), ti) < 0, f(x(i), tj) ≤ 0, j = 1, ..., n+ 1, j ̸= i, i = 1, ..., n+ 1. (10)

Let x̃ :=
1

n+ 1

n+1∑
i=1

x(i). Taking into account the convexity of the set Q, the convexity

w.r.t x of the function f(x, t), and relations (10), we obtain

x̃ ∈ Q, f(x̃, ti) = f(
1

n+ 1

n+1∑
i=1

x(i), ti) ≤
1

n+ 1

n+1∑
i=1

f(x(i), ti) < 0, i = 1, . . . , n+ 1.

The contradiction obtained proves that the condition CQ2 is satisfied for constraints (3)
whenever the condition CQ3 is valid.

The chain of the implications CQ1 ⇒ CQ3, CQ3 ⇒ CQ2, and CQ2 ⇒ CQ1 proves the
Proposition. �

Remark 1 Notice that in [7] one can find another proof of the equivalence CQ1 ⇔ CQ3.

3 Linear semi-definite programming problem

3.1 Equivalent formulation of linear SDP problem. Subspace of
immobile indices, its representation and properties

Here and in what follows, we use the following notations: given integers k and p, Rk×p denotes
the set of all k × p matrices, S(k) stands for the space of symmetric k × k matrices, and P(k)
for the cone of positive semidefinite symmetric k × k matrices.
Given A ∈ S(k), we write A ≻ 0 (A ≽ 0) if A is positive definite (positive semi-definite), and
A ≺ 0 (A ≼ 0) if A is negative definite (negative semi-definite).
The space S(k) is considered here as a vector space with the trace inner product

A •B := trace(AB) for A,B ∈ S(k),

where AB is the conventional matrix product.

Suppose that s > 1, s ∈ N. Consider a linear SDP problem in the form

min
x∈Q

cTx s.t. A(x) ≼ 0, (11)

where x = (x1, ..., xn)
T is n−vector, Q is a polyhedron defined as

Q := {x ∈ Rn : hT
i x = bi, i ∈ I1, hT

i x ≤ bi, i ∈ I2}, (12)

and A(x) is the matrix valued function

A(x) :=
n∑

i=1

Aixi + A0, (13)
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matrices Ai ∈ S(s), i = 0, 1, . . . , n, vectors c ∈ Rn, hi ∈ Rn, and numbers bi, i ∈ I1
∪

I2, are
given. Here I1 and I2 are finite index sets.
It is a well known fact that the SDP problem (11) is equivalent to the problem

min
x∈Q

cTx

s.t. lTA(x)l ≤ 0, ∀ l ∈ L = {l ∈ Rs : ∥l∥ = 1}, (14)

which is a particular case of the convex SIP problem (2), (3) with s - dimensional index set
L ⊂ Rs, s > 1.
It is evident that the feasible sets of problems (11) and (14) coincide and admit the following
representations:

X = {x ∈ Q : A(x) ≼ 0} = {x ∈ Q : lTA(x)l ≤ 0, ∀l ∈ L}. (15)

According to the definition from section 2, the constraints of the SIP problem (14) satisfy the
Slater type condition I if

∃ x̄ ∈ Q such that lTA(x̄)l < 0, ∀ l ∈ L. (16)

In terms of the SDP problem (11), the condition (16) can be written in the equivalent form

∃ x̄ ∈ Q such that A(x̄) ≺ 0. (17)

According to Definition 1, the set of immobile indices in problem (14) is

L∗ := {l ∈ L : lTA(x)l = 0,∀x ∈ X}. (18)

The following proposition is a corollary of Proposition 2.

Proposition 3 Given SDP problem in the form (11), the condition (17) is equivalent to the
emptiness of the set L∗.

Let us study some properties of the multidimensional immobile index set L∗ ⊂ Rs.

Proposition 4 Consider vectors l̄ and l̃ from L∗. Then any vector l̂ ∈ L
∩
{l ∈ Rs : l =

α1l̄ + α2l̃, α1, α2 ∈ R} belongs to L∗ as well.

Proof. Indeed, for any x ∈ X we have A(x) ≼ 0 and therefore for x ∈ X the condition
lTA(x)l = 0 is equivalent to A(x)l = 0. Hence for any l̄ ∈ L∗ and l̃ ∈ L∗ the following equalities
hold:

A(x)l̄ = 0, A(x)l̃ = 0,∀x ∈ X .

Consider vector l̂ = α1l̄ + α2l̃, such that ∥l̂∥ = 1, where α1, α2 ∈ R. Then

l̂TA(x)l̂ = (α1l̄ + α2l̃)
TA(x)(α1l̄ + α2l̃) =

α2
1 l̄

TA(x)l̄ + α2
2 l̃

TA(x)l̃ + α1α2l̃
TA(x)l̄ + α1α2l̄

TA(x)l̃ = 0, ∀x ∈ X ,

and the proposition is proved. �

It follows from Proposition 4, that the set L∗ of immobile indices in problem (14) can be
represented in the form

L∗ = L ∩M, (19)
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where M is some subspace of the vector space Rs and dim(M) =: s∗ ≤ s.

The subspace M will be called the subspace of immobile indices (or immobile index subspace)
in the SDP problem (11). It follows from (18) and (19) that

M = {l ∈ Rs : lTA(x)l = 0, ∀x ∈ X} = {l ∈ Rs : A(x)l = 0, ∀x ∈ X}. (20)

Remark 2 From Proposition 3 one can conclude that problem (11) satisfies the Slater type
condition I if and only if M = 0 ∈ Rs.

Denote by mi, i = 1, ..., s∗, vectors of a basis of the subspace M. Let M⊥ be the orthogonal
complement of M in Rs. Then the following lemma holds.

Lemma 1 Consider the set

X̃ = {x ∈ Q ⊂ Rn : A(x)mi = 0, i = 1, ..., s∗, l
TA(x)l ≤ 0, ∀l ∈ M⊥} (21)

and the feasible set X of problem (11). The equality X = X̃ is true.

Proof. From the definition of the subspace M it is evident that for all x ∈ X the following
equivalence holds:

A(x)mi = 0, i = 1, ..., s∗, ⇐⇒ A(x)l = 0, ∀ l ∈ M. (22)

Taking into account (15) and (20)-(22), we deduce that the condition x ∈ X implies the con-
dition x ∈ X̃ . Hence X ⊂ X̃ .

Suppose now that x̃ ∈ X̃ . Consider a vector l ∈ L. It can be represented in the form

l = l(1) + l(2) with l(1) ∈ M, l(2) ∈ M⊥.

Then taking into account (22), we have

lTA(x̃)l =

{
l(1)TA(x̃)l(1) = 0 if l(2) = 0,
(l(1) + l(2))TA(x̃)(l(1) + l(2)) = l(2)TA(x̃)l(2) ≤ 0 if l(2) ̸= 0,

(23)

therefore for any l ∈ Rs the inequality lTA(x̃)l ≤ 0 is true. From the latest inequality and from
the fact that x̃ ∈ Q, we get x̃ ∈ X and hence X̃ ⊂ X .
The inclusions obtained, X̃ ⊂ X and X ⊂ X̃ , prove the lemma. �

Notice here that the set X̃ in (21) can be written in the form

X̃ = {x ∈ Q ⊂ Rn : A(x)M = 0, NTA(x)N ≼ 0} = {x ∈ Q̄ ⊂ Rn : NTA(x)N ≼ 0},

where Q̄ = {x ∈ Q ⊂ Rn : A(x)M = 0}, M = (mi, i = 1, ..., s∗) is a basic matrix1 of the
subspace M, and N ∈ Rs×p∗ is a basic matrix of the subspace M⊥, with p∗ = s − s∗. Then
from Lemma 1 it follows that the set X defined in (15) admits the equivalent representation

X = {x ∈ Q̄ ⊂ Rn : NTA(x)N ≼ 0} = {x ∈ Q̄ ⊂ Rn : lTA(x)l ≤ 0,∀l ∈ M⊥ ∩ L}.
1Here and in what follows we equate a basis of a subspace to some matrix whose columns are the vectors of

this basis.
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Consequently problem (11) is equivalent to the problem

min
x∈Q̄

cTx s.t. NTA(x)N ≼ 0, (24)

whose semi-infinite form is

min
x∈Q̄

cTx s.t. lTA(x)l ≤ 0, ∀l ∈ L ∩M⊥. (25)

Different formulations (24) and (25) of SDP and SIP problems (11), (14) were obtained here at
the cost of introducing the polyhedron Q̄. In the next section, we will prove that problem (24)
satisfies the Slater type condition I

∃ x̄ ∈ Q̄ : NTA(x̄)N ≺ 0. (26)

This important property will permit us to obtain new optimality conditions for problem (24)
and the equivalent problem (11).

3.2 Optimality conditions

In this section, we will formulate optimality conditions for the SDP problem (11).

First, let us consider the case when the constraints of problem (11) satisfy the Slater type
conditions. In this case, the optimality criterion for a feasible solution x0 is well known (see
[5]):

Theorem 1 Suppose that the constraints of the linear SDP problem (11) satisfy condition
(17). Then x0 ∈ X is optimal if and only if there exist a matrix Ω0 ∈ P(s) and a vector
λ = (λi, i ∈ I1 ∪ I2), such that

Ω0 • Aj + cj +
∑

i∈I1∪I2

λihij = 0, j = 1, . . . , n, (27)

Ω0 • A(x0) = 0, λi(h
T
i x

0 − bi) = 0, λi ≥ 0, i ∈ I2,

where hT
i = (hij, j = 1, . . . , n), i ∈ I1 ∪ I2.

Now let us consider optimality conditions without constraint qualifications. The main aim of
this section is to prove the following result.

Theorem 2 A feasible solution x0 is optimal for the linear SDP problem (11) if and only if
there exist matrices Π ∈ P(p∗), Γ ∈ Rs×s∗ , and a vector λ = (λi, i ∈ I1 ∪ I2), such that

(Ω + Υ) • Aj + cj +
∑

i∈I1∪I2

λihij = 0, j = 1, . . . , n, (28)

Ω • A(x0) = 0, λi(h
T
i x

0 − bi) = 0, λi ≥ 0, i ∈ I2, (29)

where Ω = NΠNT and Υ = MΓT .

Notice that Theorem 2 is valid for any SDP problem in the form (11). To prove the theorem
we will need the following lemma.
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Lemma 2 The constraints of problem (24) satisfy condition (26).

Proof. Suppose that on the contrary, the constraints of problem (24) do not satisfy (26). Then
the constraints of the equivalent SIP problem (25) do not satisfy the Slater type condition I
and, according to Proposition 3, the set of immobile indices in this problem given by

L̄∗ = {l ∈ L ∩M⊥ : lTA(x)l = 0 for all x ∈ X̃}

is nonempty.
Let l∗ ∈ L̄∗. Since X = X̃ , it is evident that l∗ is an immobile index for problem (14) and hence
l∗ ∈ L ∩M. But this contradicts the condition l∗ ∈ L ∩M⊥ that takes place by construction.
Lemma is proved. �

Now we are ready to prove Theorem 2.

Proof of Theorem 2.
It was shown above that the SDP problem (11) is equivalent to problem (24) whose constraints
satisfy the Slater type CQs. Applying Theorem 1 to problem (24) and taking into account the
equivalence indicated above, we get the following statement for problem (11):

A feasible solution x0 is optimal for the linear SDP problem (11) if and only if there exist matrix
Π ∈ P(p∗), and vectors γi ∈ Rs, i = 1, ..., s∗, λ = (λi, i ∈ I1 ∪ I2) such that

Π • (NTAjN) +
s∗∑
i=1

γT
i Ajmi + cj +

∑
i∈I1∪I2

λihij = 0, j = 1, . . . , n, (30)

Π • (NTA(x0)N) = 0, λi(h
T
i x

0 − bi) = 0, λi ≥ 0, i ∈ I2. (31)

The optimality conditions (30), (31) can be rewritten in the form (28), (29) that concludes the
proof. �

It is easy to see that Theorem 2 can be reformulated as follows:

Theorem 3 A feasible solution x0 is optimal for the linear SDP problem (11) if and only if
there exist vectors θ(k) ∈ Θ(x0), k ∈ I, |I| ≤ min{n, p∗}, γi ∈ Rs, i = 1, ..., s∗, and a vector
λ = (λi, i ∈ I1 ∪ I2), such that

p∗∑
k=1

θ(k)TNTAjNθ(k) + cj +
s∗∑
i=1

γT
i Ajmi +

∑
i∈I1∪I2

λihij = 0, j = 1, . . . , n, (32)

λi(h
T
i x

0 − bi) = 0, λi ≥ 0, i ∈ I2. (33)

Here Θ(x) := {θ ∈ Rp∗ : θ ̸= 0, θTNTA(x)Nθ = 0}.

The new optimality conditions obtained above for the linear SDP problem (11) use the explicit
representation of the subspace of immobile indices by its basic vectors mi, i = 1, ..., s∗. An
algorithm that finds these vectors in a finite number of steps, is described later.

Remark 3 The optimality results of this section were obtained due to the fact that the we have
reformulated problem (11) in the form (24) satisfying the Slater type CQs. In its turn, this
reformulation was possible due to introduction of the subspace of immobile indices of problem
(11). This allows us to draw a conclusion about the important role that immobility plays in
characterization of feasible sets not only in SIP, but in SDP.
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3.3 Example

Here we suggest a simple illustrative example of a linear SDP problem whose constraints do
not satisfy the Slater type conditions. We consider an optimal feasible solution for which the
classical optimality conditions (Theorem 1) are not satisfied and show that nevertheless the
optimality conditions obtained here (Theorem 3) are true.

Consider the following linear SDP problem:

min
x∈Rn

(x1 + 2x2 + · · ·+ nxn)

s.t.
n∑

j=1

Ajxj − A0 ≼ 0, xj ≥ 0, j = 1, . . . , n,
(34)

where Aj =

(
aj 1
1 0

)
, j = 0, . . . , n; a0 = 1, a1 = 0, aj ∈ R, j = 2, . . . , n.

The constraints of this problem do not satisfy the Slater type conditions since the subspace
of immobile indices is not empty and has the form M = {l = (l1, l2)

T ∈ R2 : l1 = 0}. Hence
M = (m1 = e2), e

T
2 = (0, 1), s∗ = p∗ = 1.

Consider the feasible solution x0 = (1, 0, . . . , 0)T . The corresponding constraint matrix is
A(x0) = diag(−1, 0). For the given x0, the optimality conditions of Theorem 1 can be equiva-
lently reformulated as follows:

There exist vectors l(i) ∈ R2, i = 1, 2, and numbers λj ≥ 0, j = 1, . . . , n such that
1) A(x0)l(i) = 0, i = 1, 2;
2) λjx

0
j = 0, j = 1, . . . , n;

3)
2∑

i=1

(l(i))TAjl
(i) + cj − λj = 0, j = 1, . . . , n.

Conditions 1) and 2) imply that l(i) = (0, l
(i)
2 )T , i = 1, 2, λ1 = 0.

Let us check condition 3). Notice that

(l(i))TAjl
(i) = (0, l

(i)
2 )

(
aj 1
1 0

)(
0

l
(i)
2

)
= 0 for all i = 1, 2, j = 1, . . . , n.

Hence we have
2∑

i=1

(l(i))TAjl
(i) = 0 for all j = 1, . . . , n and condition 3) for j = 1 is not satisfied

since
2∑

i=1

(l(i))TA1l
(i) + c1 − λ1 = c1 = 1 ̸= 0. Hence the (classical) optimality conditions 1) -3)

do not permit to conclude about optimality of x0.

Now let us check for x0 the optimality conditions obtained in this paper. In our example, we
have s∗ = p∗ = 1,m1 = e2, N

T = (1, 0), and A(x0) = diag(−1, 0). Then, evidently, Θ(x0) = ∅,
and Theorem 3 can be reformulated as follows:

A feasible solution x0 is optimal for the linear SDP problem (34) if and only if there exist
vectors γ1 ∈ R2 and λ = (λj, j = 1, . . . , n) such that

cj + γT
1 Aje2 − λj = 0, λjx

0
j = 0, λj ≥ 0, j = 1, . . . , n.

11



Taking into account the specific form of matrix Aj and denoting γT
1 = (γ11, γ12), we can rewrite

the latest conditions as follows:

cj + γ11 − λj = 0, λjx
0
j = 0, λj ≥ 0, j = 1, . . . , n.

These conditions are satisfied with γ11 = −1, λ1 = 0, λj = cj + γ11 = j − 1 ≥ 0, j = 2, . . . , n.
Hence according to Theorem 3, the vector x0 is optimal.

4 Comparison with other forms of optimality conditions

In the previous section, we have proved the new optimality criteria for the linear SDP problem
(11). These criteria were formulated with the help of the subspace of immobile indices and its
orthogonal complement.
There exists a number of papers where other optimality conditions for SDP are studied. Usually,
the optimality conditions for SDP are obtained using duality. Different types of dual problems
are known.
The dual problems used for SDP in [3, 16, 19], and some other papers (see references in [3]),
either are restricted to a special form of SDP, or assume a kind of the Slater type CQ, therefore
the optimality conditions that can be obtained with the help of these duals are more restricted.
Here we compare the optimality results of the previous sections with that of papers [8, 17], and
[18]. The new formulations of dual problems introduced in these papers permit to eliminate the
duality gap whenever the primal is feasible and bounded. The optimality conditions obtained
using this duality (strong or no-gap duality) do not use CQ and have the form of criteria.
To simplify the comparison and to be more precise and accurate, let us represent SDP problem
(11) in the same form as in [8]. Namely, in this section we will suppose that Q = Rn and
consider the problem

(P*) min
x∈Rn

cTx s.t. A(x) :=
n∑

i=1

Aixi + A0 ≼ 0.

Let matrices M and N be defined as in section 3.1 with Q = Rn . Then Theorem 2 can be
reformulated for problem (P*) as follows:

Theorem 4 A feasible solution x0 is optimal for the linear SDP problem (P*) if and only if
there exist matrices Π ∈ P(p∗) and Γ ∈ Rs×s∗ such that

Ω̃ • Aj + cj = 0, j = 1, . . . , n, Ω̃ • A(x0) = 0 with Ω̃ = NΠNT +MΓT . (35)

Here we take into account that Ω̃ • A(x0) = (NΠNT +MΓT ) • A(x0) = (NΠNT ) • A(x0).

Notice that for any A ∈ S(s) and any convenient matrices Π and Γ , it holds

(NΠNT +MΓT ) • A = (NΠNT +MΓT/2 + ΓMT/2) • A.

As any matrix Γ ∈ Rs×s∗ can be represented in the form Γ = MW̄ +NV̄ , where W̄ ∈ Rs∗×s∗ ,
V̄ ∈ Rp∗×s∗ , then (NΠNT +MΓT ) • A = (M,N)U(M,N)T • A with some U ∈ D,

D :=
{
U ∈ S(s) : U =

(
W V
V T Π

)
, Π ∈ P(p∗)

}
. (36)
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Hence a feasible solution x0 is optimal for problem (P*) if and only if there exists a matrix
U ∈ D such that

U • Āj + cj = 0, j = 1, . . . , n, U • Ā(x0) = 0, (37)

where Āj = (M,N)TAj(M,N), j = 0, 1, ..., n, Ā(x) =
n∑

i=1

Āixi + Ā0.

Taking into account conditions (37), we can formulate the following dual for (P*):

(D*) maxU • Ā0 s.t. U • Āj + cj = 0, j = 1, . . . , n, U ∈ D.

In [8], it was shown that problem (P*) is equivalent to the regularized primal program:

(RP) min
x∈Rn

cTx s.t. −A(x) ∈ Pf ,

where Pf is the minimal cone of problem (P*) defined as

Pf := ∩{K ▹ P(s) : K ⊃ F}, F := {F : F =−A(x), x ∈ X}. (38)

A cone K ⊂ P is a face of a cone P denoted as K ▹ P if for all A,B ∈ P , the following
implication holds: A+B ∈ K ⇒ A,B ∈ K.
The dual program (regularized dual) for (RP) has the form

(DRP): maxU • A0 s.t. U • Ai + ci = 0, i = 1, . . . , n, U ∈ (Pf )+.

Here (Pf )+ is the polar cone defined as

(Pf )+ := {U ∈ S(s) : U • P ≥ 0 ∀ P ∈ Pf}. (39)

In [8, 18], it is shown that the strong duality holds for the pair of regularized dual problems
(RP) and (DRP). The following theorem is the immediate consequence of these duality results.

Theorem 5 A feasible solution x0 is optimal for the linear SDP problem (P*) if and only if
there exists a matrix U ∈ (Pf )+ such that

U • Aj + cj = 0, j = 1, . . . , n, U • A(x0) = 0. (40)

We are going now to show the equivalence of the optimality conditions (35) and (40) formulated
in Theorems 4 and 5. To do this, let us show that the cones Pf and (Pf )+ admit representations
in terms of the subspace of immobile indices.

Lemma 3 The sets Pf and (Pf )+ defined in (39) and (40) can be represented as follows:

Pf = P(s) ∩ {MMT}⊥ = {P : P = NYNT , Y ∈ P(p∗)}, (41)

(Pf )+ = (M,N)D(M,N)T := {P+ : P+ = (M,N)U(M,N)T , U ∈ D}, (42)

where the set D is given in (36).
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Here and in what follows, {A}⊥ denotes the orthogonal complement of an element A ∈ S(s) in
the space S(s).
Proof. Here we will use the following matrix properties (see [1]):

1. Given A ∈ Rs×p, B ∈ P(s), if trace(ATBA) = 0 then ATB = 0.
2. Let A ∈ Rs×p, rankA = p, and B ∈ Rs×(s−p), rankB = s − p. If ATB = 0, then for
any G ∈ Rs×s satisfying the equality ATG = 0 there exists a matrix W ∈ R(s−p)×s such that
G = BW.
3. Matrix A ∈ S(s) is positive semidefinite if and only if A •B ≥ 0 for all B ∈ P(s).

Now let us show that for any A ∈ Rs×p, rankA = p, and B ∈ Rs×(s−p), rankB = s − p, such
that ATB = 0, the following equality takes place:

P(s) ∩ {AAT}⊥ = {P : P = BY BT , Y ∈ P(s− p)}. (43)

Suppose that P̃ ∈ P(s) ∩ {AAT}⊥. Then P̃ ∈ P(s) and P̃ • AAT = trace(AT P̃A) = 0. Hence
AT P̃ = 0 (see matrix property 1 mentioned above). As P̃ ∈ P(s), then P̃ = GGT with
G ∈ Rs×s. Consequently we get ATGGT = 0 giving ATG = 0. It follows from the latest
equality and property 2 that there exists a matrix W ∈ R(s−p)×s such that G = BW. Hence
P̃ = GGT = BWW TBT = BY BT with Y = WW T ∈ P(s− p) and P̃ ∈ {P : P = BY BT , Y ∈
P(s− p)}.
Now suppose that P ∈ {P : P = BY BT , Y ∈ P(s− p)}. Then, by construction, P ∈ P(s) and
P • AAT = 0. Hence P ∈ P(s) ∩ {AAT}⊥ and (43) is proved.

Now let us prove (41). Denote Pf
M := P(s)∩{MMT}⊥. It is evident that Pf

M is a face of P(s).
Let us show that for the set F defined in (38), it holds

F ⊂ Pf
M . (44)

In fact, for any x ∈ X , we have −A(x) ∈ P(s) and A(x)MMT = 0. Hence (44) is true.

Let K be a face of P(s) such that F ⊂ K. According to [8], there exists a matrix W =
(w1, . . . , wk) ∈ Rs×k, wi ∈ Rs, i = 1, . . . , k, such that K = P(s) ∩ {WW T}⊥. Hence, for any
x ∈ X , we have −A(x) ∈ P(s) and A(x) • WW T = 0. It follows from the latest equality
and property 1 that A(x)wi = 0, i = 1, . . . , k, for all x ∈ X . By definition this means that
wi ∈ M, i = 1, . . . , k, and consequently, there exists A ∈ Rs∗×k such that W = MA. The last
equality implies P(s) ∩ {MMT}⊥ ⊂ P(s) ∩ {WW T}⊥. Thus we have proved that the face Pf

M

is the minimal one containing the set F . Hence by definition, Pf = Pf
M and relations (41) are

proved.

Finally, let us prove (42). Consider matrices U ∈ D and P = NYNT ∈ Pf . Since for these
matrices the equality (M,N)U(M,N)T • P = NTNΠNTN • Y takes place, then taking into
account property 3, we conclude that (M,N)U(M,N)T • P ≥ 0 for all U ∈ D and all P ∈ Pf .
Therefore (Pf )+ ⊃ (M,N)D(M,N)T .

For any U ∈ (Pf )+ there exists a matrix Ũ =

(
W̃ Ṽ

Ṽ T Π̃

)
∈ S(s) such that

U = (M,N)Ũ(M,N)T . The condition U ∈ (Pf )+ implies U • P = (M,N)Ũ(M,N)T •NYNT

= NT (M,N)Ũ(M,N)TN • Y ≥ 0 for all Y ∈ P(p∗). Then it follows from property 3 that
NT (M,N)Ũ(M,N)TN ≽ 0 or equivalently (0, NTN)Ũ(0, NTN)T ≽ 0.
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The latest condition together with inequality det(NTN) ̸= 0 imply Π̃ ∈ P(p∗). Hence Ũ ∈ D
and (Pf )+ ⊂ (M,N)D(M,N)T . The Lemma is proved. �

It follows from Lemma 3 that the dual problems (D*) and (DRP) are equivalent. Hence the
optimality conditions (35) and (40) formulated in Theorems 4 and 5, are equivalent as well.
At the same time notice that these conditions were obtained using different approaches: the
dual problem (DRP) and the optimality conditions (40) obtained on the base of this dual
use the minimal cone of problem (P*) and its polar cone defined implicitly in (38) and (39),
while the the optimality conditions (35) use the subspace of immobile indices. Recall that
to check the conditions of Theorem 4, one just has to find matrices Π ∈ P(p∗), W ∈ S(s∗),
and V ∈ Rs∗×p∗ satisfying conditions (37), i.e. these optimality conditions do not need any
additional constructions except a base of the space of immobile index set.

A dual program in another form is proposed in [17]. It is called an extended Lagrange–Slater
dual and denoted as (ELSD). Strong duality holds for this dual as well and one can formulate
optimality conditions for SDP in terms of this problem. In [8], it was shown that the problem
(ELSD) is equivalent to the regularized dual problem (DRP). This equivalence means here
that the constraints and the set of Lagrange multipliers are the same in both problems. The
difference between these dual problems consists in the fact that in (ELSD) the feasible set of
Lagrange multipliers, denoted as (Pf )+, is expressed implicitly in the form of solutions of n
recursive systems of additional constraints, whereas in (DRP) it is defined implicitly according
to (38), (39). From the equivalence of dual problems (ELSD) and (DRP), taking into account
the equivalence of (D*) and (DRP), we can conclude that the new optimality conditions proved
in Theorem 4, are equivalent to the conditions from [17] as well.
It is noticed in [8] that the equivalence of two dual problems (ELSD) and (DRP) found using
different techniques is more than a coincidence. Analyzing the results of this section, we
can continue this statement and say that the equivalence of the problems (ELSD) and (DRP)
(obtained using the minimal cone and dual cone approaches) to the dual problem (D*) (obtained
using the immobile indices approach), is not just a coincidence as well. This equivalence, on
the one hand, indicates that all these approaches are valid and faithful, and, on the other hand,
supports the conclusion about the important role that the subspace of immobile indices plays
in characterizing of the properties of infinite extremal problems.

5 DIIS algorithm of determination of the immobile in-

dex subspace for SDP problem (11)

Given a feasible solution of SDP problem (11), to verify if it satisfies the optimality conditions
formulated in Theorems 2 and 3, we need to know a basis mi, i = 1, . . . , s∗, of the subspace
of immobile indices M (this subspace is defined by formula (20)). In this section, we describe
and justify an algorithm that finds such basis. We call this algorithm the DIIS algorithm since
it will be used for determination of the immobile index subspace.

5.1 Description of the DIIS algorithm

Consider the linear SDP problem (11). Suppose that its feasible set X is nonempty.
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Set I1 = ∅ and k = 1.

General iteration. At the beginning of the k-th iteration of the algorithm a set of linearly
independent vectors mi ∈ Rs, i ∈ Ik, is known.

Put pk = s− |Ik| and find a solution

li ∈ Rs, i = 1, ..., pk; γi ∈ Rs, i ∈ Ik; ρi, i ∈ I1 ∪ I2 (45)

to the system

pk∑
i=1

lTi Ajli +
∑
i∈Ik

γT
i Ajmi +

∑
i∈I1∪I2

ρihij = 0, j = 0, 1, ..., n,

pk∑
i=1

||li||2 = 1, ρi ≥ 0, i ∈ I2; l
T
i mj = 0, j ∈ Ik, i = 1, ..., pk,

(46)

where hi0 := −bi, i ∈ I1 ∪ I2.

If the system does not admit any solution then STOP: it will be proved later that in this case
the vectors mj, j ∈ Ik, form a basis of the subspace M.

Otherwise consider a solution (45) to the system (46). Let {mj, j ∈ ∆Ik}, ∆Ik = {|Ik| +
1, ..., |Ik| + sk}, sk ≥ 1, be a maximal subset of linearly independent vectors from the set

{li, i = 1, ..., pk}. Notice that
pk∑
i=1

||li||2 = 1 and hence ∆Ik ̸= ∅.

Put Ik+1 := Ik ∪∆Ik, k := k + 1 and repeat the iteration.

Remark 4 It is evident that the algorithm will stop after no more than s iterations, s being
the dimension of the matrix space in problem (11).

Remark 5 The system (46) can be written in the equivalent matrix form

(Ω +MkΓ
T ) • Aj +

∑
i∈I1∪I2

ρihij = 0, j = 0, 1, ..., n,

ΩMk = 0, trace Ω = 1, Ω ≽ 0, ρi ≥ 0, i ∈ I2.

Here Mk = (mi, i ∈ Ik).

5.2 Justification of the DIIS algorithm

Suppose that the DIIS algorithm has stopped at k∗−th iteration, k∗ ≤ s and consider the
vectors

mi, i ∈ Ik∗ . (47)

By construction, these vectors are linearly independent. Denote by M̃ ⊂ Rs the subspace
generated by the vectors (47).

Theorem 6 Given SDP problem (11) with X ̸= ∅, the set M̃ constructed by the DIIS algo-
rithm, is the subspace of immobile indices in problem (11).
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Proof. Suppose, first, that the constraints of problem (11) satisfy a Slater type condition.
Then, evidently, the algorithm will stop with k∗ = 1, M̃ = 0 ∈ Rs and Ik∗ = ∅. On the other
hand, from Remark 2, we have that in this case M = 0 ∈ Rs and the theorem is proved. Notice
that here s∗ = 0.

Suppose now that the Slater type CQs are not satisfied. Let us prove that M̃ = M as well.
To prove the inclusion M̃ ⊂ M, let us show that

mj ∈ M, j ∈ Ik∗ . (48)

For k = 1, the relations mj ∈ M, j ∈ Ik, are trivially satisfied. Suppose that the inclusions
mj ∈ M, j ∈ Ik, are true for some k, 1 ≤ k < k∗. Let us show that

mj ∈ M, j ∈ Ik+1.

For this purpose we will prove that for any solution (45) of system (46) the following relations
take place

lTi A(x)li = 0 ∀ x ∈ X , i = 1, ..., pk. (49)

It follows from (46) that for all x = (x1, ..., xn) ∈ X and x0 = 1, it is satisfied:

0 =
n∑

j=0

xj(

pk∑
i=1

lTi Ajli +
∑
i∈Ik

γT
i Ajmi +

∑
i∈I1∪I2

ρihij) =

pk∑
i=1

lTi A(x)li +
∑
i∈Ik

γT
i A(x)mi +

∑
i∈I1∪I2

ρi(h
T
i x− bi) =

pk∑
i=1

lTi A(x)li +
∑
i∈I2

ρi(h
T
i x− bi).

(50)

Here we have taken into account that by assumption mi ∈ M, i ∈ Ik, and hi0 = −bi, h
T
i x =

bi, i ∈ I1, for x ∈ X . Moreover from the conditions x ∈ X , and ρi ≥ 0, i ∈ I2, we have

lTi A(x)li ≤ 0, i = 1, ..., pk; ρi(h
T
i x− bi) ≤ 0, i ∈ I2.

From the latest relations and equality (50) we get (49).
It is evident that (49) implies mj ∈ M, j ∈ ∆Ik, and hence mj ∈ M, j ∈ Ik+1. Repeating the
above reasoning for k = 1, 2, ..., k∗ − 1, we find that (48) is true, hence M̃ ⊂ M.
Now let us prove that M ⊂ M̃. Let N∗ be an orthogonal basis of M̃⊥ and M∗ = (mi, i ∈ Ik∗).
Consider the auxiliary SDP problem

J∗ := min
ξ∈R, x∈Q

ξ (51)

s.t. A(x)M∗ = 0, NT
∗ A(x)N∗ − E∗ξ ≼ 0, −ξ ≤ 1.

Here E∗ is the identity (s− |Ik∗ |)× (s− |Ik∗|)-matrix. In problem (51), the constraints satisfy
the Slater type conditions and the objective function is bounded. Hence the correspondent dual
problem admits an optimal solution.
Suppose that J∗ = 0. Then by duality theory, for k = k∗ system (46) has a solution. But
this contradicts the assumption that k∗ is the number of the iteration where the system has no
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solutions. Hence J∗ < 0 and there exists a vector x̄ ∈ Q such that A(x̄)M∗ = 0, NT
∗ A(x̄)N∗ ≺ 0

or, equivalently,

lTA(x̄)l = 0 for all l ∈ M̃; lTA(x̄)l < 0 for all l ∈ M̃⊥, l ̸= 0. (52)

Taking into account the last relations, it is not difficult to prove that x̄ ∈ X .
Let l̄ ∈ M. Since Rs = M̃ ⊕ M̃⊥, it holds: l̄ = l(1) + l(2), l(1) ∈ M̃, l(2) ∈ M̃⊥.
Let us show that l(2) = 0. Suppose that on the contrary, l(2) ̸= 0. For x̄ ∈ X and l̄ ∈ M the
equality

l̄TA(x̄)l̄ = 0

takes place by definition of M. On the other hand, taking into account relations (52), we have

l̄TA(x̄)l̄ = (l(1) + l(2))TA(x̄)(l(1) + l(2)) = (l(2))TA(x̄)l(2) < 0.

The contradiction obtained proves that the inclusion l̄ ∈ M implies l(2) = 0 and hence l̄ ∈ M̃.
Therefore M ⊂ M̃.

�

6 Conclusions

The main result of this paper consists in the proof of new optimality conditions for linear SDP.
These conditions do not use any CQ, and have the form of criteria. We compare these criteria
with some other gap-free optimality conditions.
Thus, in [8, 17], and [18] dual representations of the SDP problem are considered. These
representations use the minimal cone Pf and its polar cone (Pf )+ defined (implicitly) in (38),
(39), and permit to obtain optimality conditions (in the form of criterion) that do not use CQ.
We analyze these conditions and conclude that they are equivalent to the optimality criteria
formulated in this paper in spite of the fact that they differ in form and are obtained using
different techniques. The proof of the equivalence of different optimality conditions is one more
important result of this paper.
Moreover, the explicit representations of the minimal and polar cones in terms of the subspace
of immobile indices are obtained here. These representations permit one to understand more
deeply the structure of the feasible set of the linear SDP problem and to conclude that the
notion of immobile indices is the important characteristics of this problem.
In the future, we plan to generalize the results obtained for linear SDP problems to convex SIP
problems with multidimensional index set.
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