406 research outputs found

    Patient/Family Education for Newly Diagnosed Pediatric Oncology Patients

    Get PDF
    There is a paucity of data to support evidence-based practices in the provision of patient/family education in the context of a new childhood cancer diagnosis. Since the majority of children with cancer are treated on pediatric oncology clinical trials, lack of effective patient/family education has the potential to negatively affect both patient and clinical trial outcomes. The Children’s Oncology Group Nursing Discipline convened an interprofessional expert panel from within and beyond pediatric oncology to review available and emerging evidence and develop expert consensus recommendations regarding harmonization of patient/family education practices for newly diagnosed pediatric oncology patients across institutions. Five broad principles, with associated recommendations, were identified by the panel, including recognition that (1) in pediatric oncology, patient/family education is family-centered; (2) a diagnosis of childhood cancer is overwhelming and the family needs time to process the diagnosis and develop a plan for managing ongoing life demands before they can successfully learn to care for the child; (3) patient/family education should be an interprofessional endeavor with 3 key areas of focus: (a) diagnosis/treatment, (b) psychosocial coping, and (c) care of the child; (4) patient/family education should occur across the continuum of care; and (5) a supportive environment is necessary to optimize learning. Dissemination and implementation of these recommendations will set the stage for future studies that aim to develop evidence to inform best practices, and ultimately to establish the standard of care for effective patient/family education in pediatric oncology

    The fourteenth-century poll tax returns and the study of English surname distribution

    Get PDF
    The modern-day distributions of English surnames have been considered in genealogical, historical, and philological research as possible indicators of their origins. However, many centuries have passed since hereditary surnames were first used, and so their distribution today does not necessarily reflect their original spread, misrepresenting their origins. Previously, medieval data with national coverage have not been available for a study of surname distribution, but with the recent publication of the fourteenth-century poll tax returns, this has changed. By presenting discrepancies in medieval and nineteenth-century distributions, it is shown that more recent surname data may not be a suitable guide to surname origins and can be usefully supplemented by medieval data in order to arrive at more accurate conclusions

    Eliciting the child's voice in adverse event reporting in oncology trials: Cognitive interview findings from the Pediatric Patient-Reported Outcomes version of the Common Terminology Criteria for Adverse Events initiative: Reeve et al.

    Get PDF
    Adverse event (AE) reporting in oncology trials is required, but current practice does not directly integrate the child’s voice. The Pediatric Patient-Reported Outcomes version of the Common Terminology Criteria for Adverse Events (PRO-CTCAE) is being developed to assess symptomatic AEs via child/adolescent self-report or proxy-report. This qualitative study evaluates the child’s/adolescent’s understanding and ability to provide valid responses to the PRO-CTCAE to inform questionnaire refinements and confirm content validity

    Utilizing international networks for accelerating research and learning in transformational sustainability science

    Get PDF
    A promising approach for addressing sustainability problems is to recognize the unique conditions of a particular place, such as problem features and solution capabilities, and adopt and adapt solutions developed at other places around the world. Therefore, research and teaching in international networks becomes critical, as it allows for accelerating learning by sharing problem understandings, successful solutions, and important contextual considerations. This article identifies eight distinct types of research and teaching collaborations in international networks that can support such accelerated learning. The four research types are, with increasing intensity of collaboration: (1) solution adoption; (2) solution consultation; (3) joint research on different problems; and (4) joint research on similar problems. The four teaching types are, with increasing intensity of collaboration: (1) adopted course; (2) course with visiting faculty; (3) joint course with traveling faculty; and (4) joint course with traveling students. The typology is illustrated by extending existing research and teaching projects on urban sustainability in the International Network of Programs in Sustainability, with partner universities from Europe, North America, Asia, and Africa. The article concludes with challenges and strategies for extending individual projects into collaborations in international networks.Postprint (author's final draft

    Modelling of the effect of ELMs on fuel retention at the bulk W divertor of JET

    Get PDF
    Effect of ELMs on fuel retention at the bulk W target of JET ITER-Like Wall was studied with multi-scale calculations. Plasma input parameters were taken from ELMy H-mode plasma experiment. The energetic intra-ELM fuel particles get implanted and create near-surface defects up to depths of few tens of nm, which act as the main fuel trapping sites during ELMs. Clustering of implantation-induced vacancies were found to take place. The incoming flux of inter-ELM plasma particles increases the different filling levels of trapped fuel in defects. The temperature increase of the W target during the pulse increases the fuel detrapping rate. The inter-ELM fuel particle flux refills the partially emptied trapping sites and fills new sites. This leads to a competing effect on the retention and release rates of the implanted particles. At high temperatures the main retention appeared in larger vacancy clusters due to increased clustering rate

    Impact of ICRF on the scrape-off layer and on plasma wall interactions: From present experiments to fusion reactor

    Get PDF
    Recent achievements in studies of the effects of ICRF (Ion Cyclotron Range of Frequencies) power on the SOL (Scrape-Off Layer) and PWI (Plasma Wall Interactions) in ASDEX Upgrade (AUG), Alcator C-Mod, and JET-ILW are reviewed. Capabilities to diagnose and model the effect of DC biasing and associated impurity production at active antennas and on magnetic field connections to antennas are described. The experiments show that ICRF near-fields can lead not only to E×B convection, but also to modifications of the SOL density, which for Alcator C-Mod are limited to a narrow region near antenna. On the other hand, the SOL density distribution along with impurity sources can be tailored using local gas injection in AUG and JET-ILW with a positive effect on reduction of impurity sources. The technique of RF image current cancellation at antenna limiters was successfully applied in AUG using the 3-strap AUG antenna and extended to the 4-strap Alcator C-Mod field-aligned antenna. Multiple observations confirmed the reduction of the impact of ICRF on the SOL and on total impurity production when the ratio of the power of the central straps to the total antenna power is in the range 0.6<Pcen_{cen}/Ptotal_{total}<0.8. Near-field calculations indicate that this fairly robust technique can be applied to the ITER ICRF antenna, enabling the mode of operation with reduced PWI. On the contrary, for the A2 antenna in JET-ILW the technique is hindered by RF sheaths excited at the antenna septum. Thus, in order to reduce the effect of ICRF power on PWI in a future fusion reactor, the antenna design has to be optimized along with design of plasmafacing components

    Measuring fast ions in fusion plasmas with neutron diagnostics at JET

    Get PDF

    The effect of beryllium oxide on retention in JET ITER-like wall tiles

    Get PDF
    Preliminary results investigating the microstructure, bonding and effect of beryllium oxide formation on retention in the JET ITER-like wall beryllium tiles, are presented. The tiles have been investigated by several techniques: Scanning Electron Microscopy (SEM) equipped with Energy Dispersive X-ray (EDX), Transmission Electron microscopy (TEM) equipped with EDX and Electron Energy Loss Spectroscopy (EELS), Raman Spectroscopy and Thermal Desorption Spectroscopy (TDS). This paper focuses on results from melted materials of the dump plate tiles in JET. From our results and the literature, it is concluded, beryllium can form micron deep oxide islands contrary to the nanometric oxides predicted under vacuum conditions. The deepest oxides analyzed were up to 2-micron thicknesses. The beryllium Deuteroxide (BeOxDy) bond was found with Raman Spectroscopy. Application of EELS confirmed the oxide presence and stoichiometry. Literature suggests these oxides form at temperatures greater than 700 °C where self-diffusion of beryllium ions through the surface oxide layer can occur. Further oxidation is made possible between oxygen plasma impurities and the beryllium ions now present at the wall surface. Under Ultra High Vacuum (UHV) nanometric Beryllium oxide layers are formed and passivate at room temperature. After continual cyclic heating (to the point of melt formation) in the presence of oxygen impurities from the plasma, oxide growth to the levels seen experimentally (approximately two microns) is proposed. This retention mechanism is not considered to contribute dramatically to overall retention in JET, due to low levels of melt formation. However, this mechanism, thought the result of operation environment and melt formation, could be of wider concern to ITER, dependent on wall temperatures
    corecore