7,086 research outputs found

    Entropy Distance: New Quantum Phenomena

    Get PDF
    We study a curve of Gibbsian families of complex 3x3-matrices and point out new features, absent in commutative finite-dimensional algebras: a discontinuous maximum-entropy inference, a discontinuous entropy distance and non-exposed faces of the mean value set. We analyze these problems from various aspects including convex geometry, topology and information geometry. This research is motivated by a theory of info-max principles, where we contribute by computing first order optimality conditions of the entropy distance.Comment: 34 pages, 5 figure

    Strongly birefringent cut-wire pair structure as negative index wave plates at THz frequencies

    Full text link
    We report a new approach for the design and fabrication of thin wave plates with high transmission in the terahertz (THz) regime. The wave plates are based on strongly birefringent cut-wire pair metamaterials that exhibit refractive indices of opposite signs for two orthogonal polarization components of an incident wave. As specific examples, we fabricated and investigated a quarter- and a half-wave plate that revealed a peak intensity transmittance of 74% and 58% at 1.34 THz and 1.3 THz, respectively. Furthermore, the half wave plate displayed a maximum figure of merit (FOM) of 23 at 1.3 THz where the refractive index was -1.7. This corresponds to one of the highest FOMs reported at THz frequencies so far. The presented results evidence that negative index materials enter an application stage in terms of optical components for the THz technology.Comment: 4 pages, 3 figures, submitted to Appl. Phys. Let

    Effective interactions and phase behaviour for a model clay suspension in an electrolyte

    Full text link
    Since the early observation of nematic phases of disc-like clay colloids by Langmuir in 1938, the phase behaviour of such systems has resisted theoretical understanding. The main reason is that there is no satisfactory generalization for charged discs of the isotropic DLVO potential describing the effective interactions between a pair of spherical colloids in an electrolyte. In this contribution, we show how to construct such a pair potential, incorporating approximately both the non-linear effects of counter-ion condensation (charge renormalization) and the anisotropy of the charged platelets. The consequences on the phase behaviour of Laponite dispersions (thin discs of 30 nm diameter and 1 nm thickness) are discussed, and investigation into the mesostructure via Monte Carlo simulations are presented.Comment: LaTeX, 12 pages, 11 figure

    Outflow or galactic wind: The fate of ionized gas in the halos of dwarf galaxies

    Full text link
    Context: H\alpha images of star bursting irregular galaxies reveal a large amount of extended ionized gas structures, in some cases at kpc-distance away from any place of current star forming activity. A kinematic analysis of especially the faint structures in the halo of dwarf galaxies allows insights into the properties and the origin of this gas component. This is important for the chemical evolution of galaxies, the enrichment of the intergalactic medium, and for the understanding of the formation of galaxies in the early universe. Aims: We want to investigate whether the ionized gas detected in two irregular dwarf galaxies (NGC 2366 and NGC 4861) stays gravitationally bound to the host galaxy or can escape from it by becoming a freely flowing wind. Methods: Very deep H\alpha images of NGC 2366 and NGC 4861 were obtained to detect and catalog both small and large scale ionized gas structures down to very low surface brightnesses. Subsequently, high-resolution long-slit echelle spectroscopy of the H\alpha line was performed for a detailed kinematic analysis of the most prominent filaments and shells. To calculate the escape velocity of both galaxies and to compare it with the derived expansion velocities of the detected filaments and shells, we used dark matter halo models. Results: We detected a huge amount of both small scale (up to a few hundred pc) and large scale (about 1-2 kpc of diameter or length) ionized gas structures on our H\alpha images. Many of the fainter ones are new detections. The echelle spectra reveal outflows and expanding bubbles/shells with velocities between 20 and 110 km/s. Several of these structures are in accordance with filaments in the H\alpha images. A comparison with the escape velocities of the galaxies derived from the NFW dark matter halo model shows that all gas features stay gravitationally bound.Comment: 15 pages, 13 figures, accepted for publication in A&

    Mechano-transduction: from molecules to tissues.

    Get PDF
    External forces play complex roles in cell organization, fate, and homeostasis. Changes in these forces, or how cells respond to them, can result in abnormal embryonic development and diseases in adults. How cells sense and respond to these mechanical stimuli requires an understanding of the biophysical principles that underlie changes in protein conformation and result in alterations in the organization and function of cells and tissues. Here, we discuss mechano-transduction as it applies to protein conformation, cellular organization, and multi-cell (tissue) function

    Optomechanically induced transparency

    Full text link
    Coherent interaction of laser radiation with multilevel atoms and molecules can lead to quantum interference in the electronic excitation pathways. A prominent example observed in atomic three-level-systems is the phenomenon of electromagnetically induced transparency (EIT), in which a control laser induces a narrow spectral transparency window for a weak probe laser beam. The concomitant rapid variation of the refractive index in this spectral window can give rise to dramatic reduction of the group velocity of a propagating pulse of probe light. Dynamic control of EIT via the control laser enables even a complete stop, that is, storage, of probe light pulses in the atomic medium. Here, we demonstrate optomechanically induced transparency (OMIT)--formally equivalent to EIT--in a cavity optomechanical system operating in the resolved sideband regime. A control laser tuned to the lower motional sideband of the cavity resonance induces a dipole-like interaction of optical and mechanical degrees of freedom. Under these conditions, the destructive interference of excitation pathways for an intracavity probe field gives rise to a window of transparency when a two-photon resonance condition is met. As a salient feature of EIT, the power of the control laser determines the width and depth of the probe transparency window. OMIT could therefore provide a new approach for delaying, slowing and storing light pulses in long-lived mechanical excitations of optomechanical systems, whose optical and mechanical properties can be tailored in almost arbitrary ways in the micro- and nano-optomechanical platforms developed to date

    Barrier-controlled carrier transport in microcrystalline semiconducting materials: Description within a unified model

    Full text link
    A recently developed model that unifies the ballistic and diffusive transport mechanisms is applied in a theoretical study of carrier transport across potential barriers at grain boundaries in microcrystalline semiconducting materials. In the unified model, the conductance depends on the detailed structure of the band edge profile and in a nonlinear way on the carrier mean free path. Equilibrium band edge profiles are calculated within the trapping model for samples made up of a linear chain of identical grains. Quantum corrections allowing for tunneling are included in the calculation of electron mobilities. The dependence of the mobilities on carrier mean free path, grain length, number of grains, and temperature is examined, and appreciable departures from the results of the thermionic-field-emission model are found. Specifically, the unified model is applied in an analysis of Hall mobility data for n-type microcrystalline Si thin films in the range of thermally activated transport. Owing mainly to the effect of tunneling, potential barrier heights derived from the data are substantially larger than the activation energies of the Hall mobilities. The specific features of the unified model, however, cannot be resolved within the rather large uncertainties of the analysis.Comment: REVTex, 19 pages, 9 figures; to appear in J. Appl. Phy

    A new microvertebrate fauna from the Middle Hettangian (early Jurassic) of Fontenoille (Province of Luxembourg, south Belgium)

    Get PDF
    A Lower Jurassic horizon from Fontenoille yielding fossil fish remains can be dated to the Middle Hettangian Liasicus zone on the basis of the early belemnite Schwegleria and the ammonite Alsatites Iciqueus francus. Hybodontiform sharks are represented by Hybodus reticularis, Lissodus sp„ Polxacrodus sp, and Neoselachians by Synechodus paludinensis nov. sp. and Synechodus streitzi, nov. sp. Earlier reports of a scyliorhinid are not confirmed; teeth of similar morphology to scyliorhinids seem to be juvenile variants of 5. paludinensis. Chimaeriform remains include Squaloraja sp., the earliest occurrence of the genus. The Actinopterygian fauna is introduced, comprising a palaeonisciform cf. Ptxcholepis, a possible late perleidiform cf. Platysiagum, the dapediid semionotiforms Dapedium and cf. Tetragonolepis, the pycnodontiform Eomesodon, halecomorphs cf. Furidae or Ophiopsidae, pholidophoriforms and/or Leptolepididae, and actinistians. Lepidosaur remains are also present

    Cubic Defects: Comparing the Eight-State-System with its Two-Level-Approximation

    Full text link
    Substitutional defects in a cubic symmetry (such as a lithium defect in a KCl host crystal) can be modeled appropriately by an eight-state-system. Usually this tunneling degree of freedom is approximated by a two-level-system. We investigate the observable differences between the two models in three contexts. First we show that the two models predict different relations between the temperature dependence of specific heat and static susceptibility. Second we demonstrate that in the presence of external forces (pressure and electric field) the eight-state-system shows features that cannot be understood within the framework of the two-level-approximation. In this context we propose an experiment for measuring the parameter for tunneling along the face diagonal. Finally we discuss the differences between the models appearing for strongly coupled pairs. Geometric selection rules and particular forms of asymmetry lead to clear differences between the two models.Comment: 19 pages, Latex, submitted to J. of Phys., some small supplement
    corecore