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We study a curve of Gibbsian families of complex 3 × 3-matrices and point out
new features, absent in commutative finite-dimensional algebras: a discontinuous
maximum-entropy inference, a discontinuous entropy distance, and non-exposed
faces of the mean value set. We analyze these problems from various aspects including
convex geometry, topology, and information geometry. This research is motivated
by a theory of infomax principles, where we contribute by computing first order
optimality conditions of the entropy distance. C© 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4757652]

I. INTRODUCTION

The aim of the introduction is a discussion of the maximum-entropy inference under linear
constraints, in two aspects: The problem of its discontinuity and its connection to infomax principles,
asking for maximization of the entropy distance from an exponential family. Section I B gives an
overview of the article.

A. Maximum-entropy inference and infomax principles

The maximum-entropy principle, dating back to Clausius and Boltzmann, became the informa-
tion theoretic justification of the thermodynamic formalism in the work of Jaynes.21 A comprehensive
account of this development is included, e.g., in Ref. 12, which supports a Bayesian point of view
of physics. Under a more restrictive frequentist point of view, let us add that the Shannon entropy
and von Neumann entropy, quantifying the uncertainty in the maximum-entropy principle, are also
characterized operationally by coding theorems: These entropies quantify the amount of physical
resources needed on the average to encode the result of a repeatable experiment on the long run.
This was first proved for independent identically distributed random variables in Ref. 39 and for
pure quantum states in Ref. 38, see also Ref. 11 for generalizations.

We have discovered in three-level quantum systems a problem that can arise for non-
commutative observables: The real analytic maximum-entropy inference under linear constraints
has no continuous extension. An example is given in Remark 22; this phenomenon does not appear
in commutative algebras of finite dimensions. The surprise of a discontinuity shows that we have
currently no quantitative understanding of the maximum-entropy inference at all. Other branches
of quantum statistics are much further developed, e.g., in hypothesis testing4, 29 it is known which
observations have the fastest asymptotic exponential decay of error probability. Optimal tests are
known in state tomography with respect to natural measures of efficiency33, 46 and bounds on the
number of observations have been found for important special classes of quantum systems.9, 18

What do we mean by a discontinuous maximum-entropy inference? We use a fixed set of
observables a1, . . . , ak, i.e. self-adjoint matrices in the algebra A = Mat(N ,C), and denote by Asa

a)sweis@mis.mpg.de.
b)knauf@mi.uni-erlangen.de.

0022-2488/2012/53(10)/102206/25/$30.00 C©2012 American Institute of Physics53, 102206-1

Downloaded 07 Nov 2012 to 131.188.201.33. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1063/1.4757652
http://dx.doi.org/10.1063/1.4757652
mailto: sweis@mis.mpg.de
mailto: knauf@mi.uni-erlangen.de


102206-2 S. Weis and A. Knauf J. Math. Phys. 53, 102206 (2012)

the real vector space of self-adjoint matrices. We assume a quantum system is described by a density
matrix ρ, also called state, i.e. ρ ∈ Mat(N ,C) (N-level system), ρ � 0 (positive semi-definite) and
tr(ρ) = 1 (normalized). We denote by S(A) the set of density matrices, called state space. We assume
a generic quantum systems where the density matrix ρ is invertible.

The von Neumann measurements (see Ref. 32) of ar = ∑
λ∈spec(ar ) λPr,λ yield eigenvalue λ with

probability tr(ρPr, λ).

• If n copies of ρ are available for measurement (in form of the n-fold tensor product ρ ⊗ · · · ⊗
ρ ∈ A⊗n

sa ), then n measurements of ar give us eigenvalues λ1, . . . , λn ∈ spec(ar) such that the
mean

ar (n) := 1
n (λ1 + . . . + λn) (1)

converges to the true mean tr(ρar) by the strong law of large numbers.
• If nk copies of ρ are available, the measured values m1, . . . , mk of the k random variables

a1(n), . . . , ak(n) define an affine subspace{
σ ∈ Asa | (

tr(σa1), . . . , tr(σak)
) = (

m1, . . . , mk
) }

. (2)

We assume that this subspace intersects the state space S(A), since by large deviation theory
(e.g., Chap. I.3 of Ref. 15) the probability of a distance larger than a given ε > 0 from ρ decays
exponentially in n.

The maximum-entropy inference associates to the measured values (m1, . . . , mk) the unique
density matrix ρ̂(n) in the set of states σ satisfying (2) which maximizes the von Neumann
entropy

S(σ ) := −tr(σ log(σ )) . (3)

The maximum-entropy inference is well-defined for all mean value tuples (tr(σa1), . . . , tr(σak))
where σ is a density matrix, since the von Neumann entropy is a strictly concave function on the
state space S(A).41 Later we work with a projection of S(A), called mean value set, which is
affinely isomorphic to the set of mean value tuples. When restricted to the set of mean value tuples
of invertible density matrices σ , the maximum-entropy inference is a real analytic mapping, see,
e.g., Ref. 45. The image, called Gibbsian family (of density matrices), consists of all matrices of the
form

exp(a0 + λ1a1 + · · · + λkak)/tr(exp(a0 + λ1a1 + · · · + λkak))

for real λ1, . . . , λk and a0 = 0. In general, if ar ∈ Asa, this manifold of density matrices is called
exponential family.

A natural measure of efficiency is the asymptotical variance of the maximum-entropy inference.
Here we refer to the variance of the inference applied to the random variables ar (n), r = 1, . . . , k, for
large n. Its asymptotic order O(1/n) has appeared in the context of model selection.34 However, we
discuss in Remark 22 a Gibbsian family where the real analytic maximum-entropy inference defined
on the interior of the mean value set has no continuous extension to the full mean value set. While
the variance of the random variables ar (n) and of the tuple (a1(n), . . . , ak(n)) is of order O(1/n),
the statement is not obvious for the maximum-entropy inference ρ̂(n). Indeed, the constant in the
variance estimate O(1/n) of ρ̂(n) can be arbitrarily large. For the non-generic choice of a singular
density matrix ρ the limit limn→∞ ρ̂(n) needs not even be a state of maximum von Neumann entropy
and we ask for its distribution of limits.

Maximum-entropy inference is closely connected to the entropy distance from an exponential
family. The relative entropy between states ρ, σ ∈ S(A) is S(ρ, σ ) := + ∞ unless the image of σ

contains that of ρ and then (using the natural logarithm)

S(ρ, σ ) := tr ρ
(

ln(ρ) − ln(σ )
)
. (4)

The distance-like properties of S(ρ, σ ) ≥ 0 and of S(ρ, σ ) = 0 ⇔ ρ = σ hold.41 However, the
relative entropy is not a metric. For E ⊂ S(A)

dE : S(A) → R, ρ 
→ infσ∈E S(ρ, σ ) (5)
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is called entropy distance of ρ from E . If E contains invertible density matrices, then dE is bounded
on S(A).

Entropy distance has several motivations. Under arbitrary constraints, maximizing the von
Neumann entropy is the same as minimizing the relative entropy distance d{1/tr(1)} from the tracial
state. In Sec. II we recall that for linear constraints the latter is equivalent to the unconstrained
minimization of the relative entropy in its second argument from the corresponding Gibbsian family.
This minimum is the entropy distance defined in (5). It also plays an important role in another
field. Infomax principles support the hypothesis that natural systems tend to maximize structured
correlations. This, in the work, see Ref. 5, is formalized as deviation from an exponential family E ,
and is quantified by the entropy distance. An instructive example is the mutual information used in
information theory:

Example 1 (Product States): The mutual information of a bipartite state ρAB is given by S(ρAB,
ρA⊗ρB) ≥ 0 for the relative entropy S and for reduced states ρA resp. ρB on subsystem A resp. B. It
is zero only when ρAB = ρA⊗ρB. The relative entropy measures the distance of an arbitrary bipartite
state from the Gibbsian family of all product states.

The mutual information of a quantum system measures the total correlation of a bipartite
quantum system. Quantum correlations include entanglement which is an inherently quantum kind
of correlation and its numerical measures are still being discussed. One approach is to use the
entropy distance from the set of not entangled states, known as relative entropy of entanglement,
see e.g. Refs. 19 and 40. Correlation measures having the form of the entropy distance from a
Gibbsian family are used in statistical physics, image processing or in the theory of neural networks
to just name a few, see e.g. Refs. 2, 7, 16, and 25. Maximizers of the entropy distance from an
exponential family (of probability distributions) were studied, e.g., in Refs. 5, 6, 26, 27, and 35. In
Sec. V we contribute to a non-commutative analog by computing first order optimality conditions
for the entropy distance from a Gibbsian family.

B. Summary of our results

Rest of the paper will focus on observables in the algebra of Example 3. We study a curve
of planes in a Grassmannian manifold of linear spaces that defines a curve of two-dimensional
Gibbsian families of 3 × 3-density matrices. Unlike Gibbsian families in finite probability spaces,
one of the families has a discontinuous entropy distance and its real analytic maximum-entropy
inference does not extend continuously. We discuss several candidates of closures to extend Gibb-
sian families and we propose a convex geometric criterion to characterize discontinuities: Where
non-exposed faces are born in a Grassmannian manifold of linear subspaces, families have a dis-
continuous inference. This conjecture is supported by the example of the Staffelberg family in
Sec. IV B.

To compare classical and quantum physics, we consider *-subalgebras A of Mat(N ,C).
To allow low-dimensional examples we consider them real, i.e., A is a subring of Mat(N ,C),
and an R-module closed under conjugation a 
→ a∗. However, it is not necessarily closed
under complex scalar multiplication. The state space of A is the set S = S(A) = {ρ ∈ A | ρ

� 0, tr(ρ) = 1} of density matrices. We denote 1 / 0 resp. 1N / 0N the identity / zero in A
resp. Mat(N ,C). We allow for 1 �= 1N which we need to study the swallow family in Sec. IV D
and to prove an optimality condition in Sec. V, see also Remark 6. The real vector space of
self-adjoint matrices Asa is an Euclidean vector space for the Hilbert-Schmidt scalar product
〈a, b〉 = tr(ab), a, b ∈ Asa.

Remark 2: There are other natural definitions of the state space of a real *-subalgebra A of
Mat(N ,C), e.g.,

1. the density matrices in A (like above),
2. the states on Mat(N ,C) restricted to Asa,
3. the positive linear functionals on Asa that take the value 1 at the identity.
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These definitions are mutually equivalent, assuming 1N ∈ A. The inclusions of 1, into 2, into 3. are
trivial. The inclusion of 3. into 2. follows from the Riesz extension theorem and the inclusion of
2. into 1. follows from the fact that orthogonal projection from Mat(N ,C)sa onto Asa takes density
matrices to density matrices.

The following real *-subalgebra of the C*-algebra Mat(2,C) ⊕ C is sufficiently rich for our
purposes and it includes the curve of Gibbsian families. The state space of Mat(2,C) ⊕ C has
already been analyzed in Ref. 23 as the simplest example of a “hybrid” memory, and improved
coding theorems were obtained, taking into account direct sums of full matrix algebras. Here we use
this algebra for the sole purpose to have simple low-dimensional examples of state spaces.

Example 3: We consider the real *-subalgebra B ⊂ Mat(2,C) spanned by 12, σ 1, σ 2, and iσ 3

for the Pauli σ -matrices σ1 :=
(

0 1
1 0

)
, σ2 :=

(
0 −i
i 0

)
, σ3 :=

(
1 0
0 −1

)
. This algebra is isomorphic to

Mat(2,R) by exchanging σ 2 and σ 3.

A real *-subalgebraA ⊂ Mat(3,C) is defined by block diagonal matrices

( ∗ ∗ 0
∗ ∗ 0
0 0 ∗

)
with elements

of B in the upper left corner and real numbers in the lower right corner. The state space of B is
S(B) = conv{ 1

2 (12 + sin(α)σ1 + cos(α)σ2) | α ∈ R} where conv denotes convex hull. This disk is
a section of the state space of Mat(2,C), known as Bloch ball. The state space of A is a three-
dimensional cone based on S(B) ⊕ 0 and with apex 02 ⊕ 1,

S(A) = conv(02 ⊕ 1, ρ(α); α ∈ R)

for

ρ(α) := 1
2 (12 + sin(α)σ1 + cos(α)σ2) ⊕ 0 .

It is the solid of revolution of an equilateral triangle.

It is well known that state spaces of commutative and non-commutative algebras have quite
different geometries. Whereas in the commutative case we have a simplex (and thus every state is
uniquely decomposed into pure states), in the non-commutative case such a decomposition is highly
non-unique (think of the Bloch ball).

Still, from the point of view of convex geometry there is one common property of all these state
spaces: all of their faces are exposed, that is, they can be described as the intersection of state space
with a half space, see Ref. 1. Non-exposed faces are found, e.g., on the circumference of a stadium,
at the four points where a half-circle meets a segment. See Sec. III for precise definitions. In the
probabilistic setting of A ∼= CN , embedded as diagonal matrices, measurement of observables f1,
. . . , fn leads to an orthogonal projection

S(A) −→ Rn, p 
−→ (
Ep( f1), . . . ,Ep( fn)

)
of state space, based on expectation Ep. The image, called mean value set or convex support8 is no
longer a simplex but still a polygon. So faces of a mean value set are exposed, too. The same applies
to all exponential families and their natural projections, see Figure 1.

We exhibit here two main differences between exponential families in commutative and non-
commutative algebras, at least in the curve of our example.

• First, we show in Sec. III that it is typical for a non-commutative algebra that mean value sets
have non-exposed faces.

• Second, we show in Sec. IV B that the entropy distance from an exponential family can be
discontinuous in exceptional cases.

In Figure 2 (left) we have drawn two-dimensional mean value sets of the state space S(A) from
Example 3. A mean value set has non-exposed faces if it is the convex hull of a non-degenerate ellipse
and of an exterior point. Mean value sets with non-exposed faces are bounded in the Grassmannian
manifold by elliptical shapes that correspond to exponential families with discontinuous entropy
distance (angles 1

6π, 5
6π, 7

6π, and 11
6 π ). It seems this boundary in the Grassmannian manifold is

pivotal for discontinuity.
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FIG. 1. Mean value sets for two probabilistic exponential families. Left: triangle; Right: square.

Sketching ideas to a classification of non-exposed faces of a mean value set, these non-
exposed faces are related to singularities of a section of the state space with a plane parallel to
the projection:10, 44 The singularities have non-unique tangents and they are incident with at most
one segment, see Figure 2. Projections and sections are related by convex duality. Here is much
more to explore in terms of convex algebraic geometry, see, e.g., Ref. 28.

Already in 1963 ensembles of maximum chaos in A = Mat(N ,C) were studied in Ref. 45.
However, non-exposed faces at a mean value set have attracted little attention in the literature. In
particular Theorem I (e) in Ref. 45, concerning extreme points is wrong, it fails in all cases where
non-exposed extreme points appear. An example is given in Remark 29 (a). We are convinced that
non-exposed faces are important in the analysis of maximum-entropy inference and entropy distance.
As we have seen in the beginning of this section the convex geometric notion of non-exposed face
indicates discontinuity of the inference.

We will show later in this paper that the maximum-entropy inference does not extend continu-
ously. So the question arises how a Gibbsian family G must be extended to a set of maximum-entropy
density matrices under linear constraints. It is clear that the topological norm closure is too large. In
the examples presented in Sec. IV we will prove that the reverse information closure or rI-closure

clrI(G) := {ρ ∈ S(A) | inf
σ∈G

S(ρ, σ ) = 0} (6)

gives the right answer. Its name is motivated from probability theory13 and it consists of states
that approximate G in relative entropy S. Information geometry3 gives us two canonical choices

FIG. 2. The 3D cone is the state space of a non-commutative algebra. Left: Mean value sets (projections of the cone); Right:
sections of the cone. Projections respectively sections are with respect to planes including the tracial state 1/tr(1), which is
the centroid of the cone.
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of geodesics on the manifold G. These ( + 1)-geodesics and ( − 1)-geodesics will be defined in the
Sec. II. They give rise to the ( + 1)-closure

cl(+1)(G) := G ∪ { limit points of (+1)-geodesics in G } (7)

and the ( − 1)-closure

cl(−1)(G) := G ∪ { limit points of (−1)-geodesics in G } . (8)

The inclusions of cl(+1)(G) and cl(−1)(G) into the norm closure G are obvious. We show

cl(+1)(G) ⊂ clrI(G) ⊂ G , (9)

where the second inclusion follows from the Pinsker-Csiszár inequality. We prove that the ( + 1)-
closure is smaller than the set of maximum-entropy density matrices, and that the rI-closure and the
( − 1)-closure are possible candidates for the correct extension of G.

II. TWO AFFINE CHARTS AND SOME REMARKS

We introduce two sorts of canonical geodesics on a Gibbsian family and we provide a geometric
discussion of how the maximum-entropy inference relates to the entropy distance. We remark on
the information geometric context of the geodesics, on quantum channels and on advantages of real
*-subalgebras as opposed to C*-subalgebras.

In this section A denotes an arbitrary real *-subalgebra of Mat(N ,C). The set of invertible
states equals the relative interior of the state space

riS(A) = {ρ ∈ S(A) | ρ−1 exists in A} ,

i.e., the interior of S(A) in its affine span A1 := {a ∈ Asa | tr(a) = 1}, see e.g. Proposition 2.9 in
Ref. 43. The trace-normalized exponential is the real analytic mapping

exp1 : Asa −→ riS(A), a 
−→ ea

tr(ea )

defined by functional calculus of self-adjoint matrices inA. This is a diffeomorphism when restricted
to traceless matrices. The real analytic inverse ln0 : ri(S(A)) → A0 defined by

ln0 : ρ 
→ ln(ρ) − 1 tr(ln(ρ))/tr(1)

is the canonical chart of riS(A).
The image of a non-empty affine subspace of Asa under exp1 is an exponential family in A. For

an exponential family E we call ln0 |E the canonical chart of E . The affine space � := ln0(E) is the
canonical parameter space, its translation vector space V := {x − y | x, y ∈ �} is the canonical
tangent space and the restriction of exp1 to � is the canonical parametrization of E .

An exponential family is a Gibbsian family if � = V , and for that case a different chart was
introduced in Theorem 2 (b) in Ref. 45: If πV : Asa → V denotes orthogonal projection onto V , we
define the mean value set

M(V ) = MA(V ) := πV
(
S(A)

)
. (10)

The mean value set is affinely isomorphic to {(〈ρ, v1〉, . . . , 〈ρ, v1〉 | ρ ∈ S(A)}, if v1, . . . , vk is a
basis of V , see e.g. Remark 1.1 in Ref. 43. The latter set was used in Ref. 45. It is not reasonable to
choose a basis of V in our analysis, because vector spaces pV p for projections p = p2 = p∗ ∈ A
will be used, see Remark 6, and multiplication with p can destroy linear independence.

The map πV ◦ exp1 |V : V → ri
(
M(V )

)
is a real analytic diffeomorphism, its image is an open

subset of V . The mean value chart for the Gibbsian family E is the bijection

πV |E : E −→ ri
(
M(V )

)
. (11)

The real analytic inverse πE : ri
(
M(V )

) → E shall be called mean value parametrization. Below we
also write πE for the map πE ◦ πV defined on the domain dom E := S(A) ∩ (E + V ⊥), which was
introduced in Ref. 5 (for probability distributions). In fact, the chart (11) was established in Ref. 45
for A = Mat(N ,C). Since V contains only traceless matrices, its is proved in Lemma 3.13 in
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Ref. 43 thatMA(V ) = MMat(N ,C)(V ) holds for every C*-subalgebraA ⊂ Mat(N ,C) which contains
V . Remark 6 extends this equality to real *-subalgebras A including V . So (11) holds for these
algebras.

The two charts for a Gibbsian family E have open subsets of the canonical tangent space V as
their images. Given that V is an affine space, two kinds of affine geodesics forE arise: Unparametrized
( + 1)-geodesics are the images of open segments in V under the canonical parametrization exp1 :
V → E , and unparametrized ( − 1)-geodesics are the images of open segments in ri

(
M(V )

)
under

the mean value parametrization πE : ri
(
M(V )

) → E . We shall denote the open segment between
a, b ∈ Asa by ]a, b[ := {(1 − λ)a + λb|0 < λ < 1} and the closed segment by [a, b] := {(1 − λ)a
+ λb|0 ≤ λ ≤ 1}. A more comprehensive introduction of ( ± )-geodesics is given in Sec. 7.2 in
Ref. 3. The geodesics are part of a beautiful theory, called information geometry, about affine
connections and Riemannian metrics on state spaces. See Remark 4 for some details.

The relative entropy suits exponential families very well. If ρ, σ and τ are states in A with σ

and τ invertible, and if ρ − σ⊥ ln (τ ) − ln (σ ), then

S(ρ, σ ) + S(σ, τ ) = S(ρ, τ ) (12)

holds, see e.g., Ref. 30. This is the Pythagorean theorem of the relative entropy. Clearly the
Pythagorean theorem (12) holds if σ and τ belong to an exponential family E in A and if ρ ∈ S(A)
satisfies ρ − σ ⊥ V . The projection theorem follows for ρ ∈ dom E :

minσ∈E S(ρ, σ ) = S
(
ρ, πE (ρ)

)
, (13)

the minimum being unique. See Remark 4 about the information geometry of these theorems.
The linearly constrained maximization of von Neumann entropy can be replaced by an uncon-

strained minimization of the relative entropy. As mentioned previously, for V = � the mean value
parametrization

πE : ri
(
M(V )

) → E (14)

assigns to vectors v ∈ ri
(
M(V )

)
the unique state πE (v) of maximum von Neumann entropy in

the fiber F(v) := (v + V ⊥) ∩ S(A). This is often proved using Lagrange multipliers or Klein’s
inequality, see e.g. Ref. 20.

A proof of (14) by information geometry opens a link to the entropy distance: Let τ = 1/tr(1)
be a reference state. Then S(ρ, τ ) = −S(ρ) + log(tr(1)) for all ρ ∈ S(A), so maximizing the von
Neumann entropy is equivalent to minimizing the relative entropy from τ , under arbitrary constraints
(a different choice of τ corresponds to a biased inference37). For all v ∈ ri

(
M(V )

)
the fiber F(v) is

included in the domain dom E of the Gibbsian family E = exp1(V ) by the mean value chart (11).
Since τ ∈ E , the Pythagorean theorem (12) shows for any state ρ ∈ F(v)

S(ρ, πE (ρ)) + S(πE (ρ), τ ) = S(ρ, τ ) .

Minimizing S( · , τ ) over ρ ∈ F(v) has the unique solution πE (ρ). In addition, by the projection
theorem (13), it is equivalent to the unconstrained minimization of S(ρ, · ) on E (independent of the
choice of ρ ∈ F(v)).

Pythagorean and projection theorems as well as the ( + 1)- and ( − 1)-geodesics are rooted in
information geometry.

Remark 4: The exponential family ri
(
S(A)

)
of invertible density matrices has the mean value

chart ρ 
→ ρ − 1/tr(1). Its tangent space at ρ is called the (m)-representation and equals A0 := {a
∈ Asa | tr(a) = 0}, see p. 148 in Ref. 3. According to Ref. 30, the BKM (Bogoliubov-Kubo-Mori)
metric, a Riemannian metric on ri

(
S(A)

)
, can be defined for invertible density matrices ρ and tangent

vectors A, B in the (m)-representation by

g(A, B)ρ :=
∫ ∞

0
tr

(
(t + ρ)−1 A(t + ρ)−1 B

)
dt .

Although the BKM metric is a natural generalization of the Fisher metric to state spaces of non-
commutative algebras, unlike the former it is not the only such monotone one, see e.g. Ref. 31.
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The (m)-connection on the state space ri(S(A)), denoted ∇(m), is defined through the parallel
transport of translation on the affine hull A1 = {a ∈ Asa | tr(a) = 1} of the state space. If g is a
Riemannian metric on the manifold ri(S(A)) then the (e)-connection, denoted ∇(e), is defined by

Xg(Y, Z ) = g
(∇(m)

X Y, Z
) + g

(
Y,∇(e)

X Z
)

for vector fields X, Y, Z on ri
(
S(A)

)
. The connections ∇(m) and ∇(e) are said to be dual with respect

to g. The (m)-connection is also called ( − 1)-connection, and when the BKM Riemannian metric g
is used, then the dual (e)-connection is called ( + 1)-connection. The connections ∇( + 1) and ∇( − 1)

give rise to the geodesics introduced above, see e.g. Secs. 7.2 and 7.3 in Ref. 3.
The state space of the (real) *-subalgebra A is trivially ( − 1)-autoparallel (i.e. totally geodesic)

and it is ( + 1)-autoparallel as it is an exponential family. This shows that the ( ± )-connections
restrict from the state space of Mat(N ,C) to ri(S(A)).

A Pythagorean theorem and a projection theorem are known in information geometry for dually
flat spaces. The relative entropy is the canonical divergence of the dually flat space of invertible
density matrices with respect to the BKM metric and the ( ± )-connections. Hence the Pythagorean
theorem (12) arises from a more general theory, see, e.g., Sec. 3.4 in Ref. 3. The ( − 1)-geodesic
through ρ and σ and the ( + 1)-geodesic through σ and τ meet at σ orthogonally with respect to the
BKM metric.

The projection πV |S(A) : S(A) → V can be seen as a quantum channel to a commutative algebra.

Remark 5: The mean value set M(V ) = πV (S(A)) relates to a POVM quantum measurement.
A POVM is defined as a finite sequence F1, . . . , Fn of positive semidefinite matrices in A, such that
F1 + · · · + Fn = 1. The probability of outcome i ∈ {1, . . . , n} when measuring the quantum system
ρ ∈ S(A) is Pρ(i) := tr(Fiρ), see, e.g., Ref. 32. Given a POVM F1, . . . , Fn in A, a quantum channel

S(A) → S(Cn) , ρ 
→ (Pρ(1), . . . ,Pρ(n)) = (tr(F1ρ), . . . , tr(Fnρ))

is defined. If U is the real linear span of F1, . . . , Fn and Ũ is the orthogonal projection of U onto the
space of traceless matrices A0, then the mean value sets M(U ) = πU (S(A)) and M(Ũ ) = πŨ (S(A))
are affinely isomorphic to the image of the above channel S(A) → S(Cn). (For a proof see, e.g.,
Remark 1.1 in Ref. 43).

We would like to comment on (real) *-subalgebras.

Remark 6: As already mentioned earlier, *-subalgebras allow for low-dimensional exam-
ples. What makes *-subalgebra A of Mat(N ,C) eligible for our treatment is that all results in
Ref. 43 are true for them (unfortunately the choice in that article was to argue with intersections of
C*-subalgebras and real matrices Mat(N ,R)). Some caution is needed, e.g. spectral projections of
normal matrices need not be included in A, as the matrix iσ 3 ⊕ 0 in Example 3 shows. This error
is present in Definition 2.5.3 of the above article. However, as only self-adjoint matrices are used,
there is no problem arising.

An important feature of a *-subalgebra A of Mat(N ,C) is that spectral projections p of a
self-adjoint matrix a ∈ Asa can be written as p = f(a) for a real polynomial f in one variable. This
implies that

• if a is a self-adjoint matrix and g is a real valued function defined on the spectrum of a, then
g(a) belongs to Asa,

• the state space has codimension one in Asa, as the cone of positive semi-definite matrices has
full dimension (decompose a self-adjoint matrix into a difference of two positive semi-definite
matrices).

One superficial flaw of *-subalgebras (and of C*-subalgebras!) is that eigenvalues cannot be used
directly, as the identity 1 of A may differ from the identity 1N in Mat(N ,C). On a closer inspection
one realizes that this is exactly the flexibility we need, e.g., in Proposition 14 and Theorem 27 to
analyze rI-closures. The ( + 1)-closure of an exponential family is formed by exponential families
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of strictly smaller support, lying in compressed algebras

pAp = {pap | a ∈ A}
with identity p = p2 = p∗ ∈ A. The algebra pAp as a *-subalgebra of Mat(N ,C) may be treated
in the same way as A. The unorthodox use of spectral values within a finite-dimensional algebra
was overlooked in Ref. 43, see the correction [Lin. Alg. Appl. 436 1 p. xvi (2012)].

III. A CLASSICAL—QUANTUM METAMORPHOSIS

In the algebraA from Example 3 we study a curve of 2D mean value sets and we address the ques-

tion whether they have non-exposed faces. The algebraA has the commutative *-subalgebra

( ∗ 0 0
0 ∗ 0
0 0 ∗

)
of diagonal matrices, isomorphic to R3, and its left upper corner

( ∗ ∗ 0
∗ ∗ 0
0 0 0

)
is a non-commutative *-

subalgebra.
The curve of mean value sets is rather a Grassmannian manifold of subspaces. More precisely,

we consider 2D subspaces of the 4D space Asa of self-adjoint matrices and here we restrict to
2D subspaces of the 3D space of traceless matrices (since the state space is parallel to it). So by
symmetry of the cone S(A) one real angular variable suffices to describe mean value sets. Thus we
can consider a curve in the Grassmannian manifold. In Figure 2, left, mean value sets M(V ) are
drawn isometrically at equidistant 1

12π angles around a full circle.
Our example is minimal in two respects:

• Planar projections have minimal dimension to allow for non-exposed faces.
• The algebra A is (up to isomorphism) the smallest *-subalgebra A of Mat(N ,C) allowing for a

mean value set with non-exposed faces. IfA has no *-subalgebra isomorphic to Mat(2,R) then,
assuming 1 = 1N , thenA is commutative (see Theorem 5.2 and 5.4 in Sec. 5 in Ref. 22). (1 = 1Ñ
may be achieved by restricting a faithful representation of the C*-algebra 1Mat(N ,C)1 onto
a direct sum of full matrix algebras, see, e.g., Ref. 14.) Hence the state space S(A) is a
simplex. Then all mean value sets are polytopes having no non-exposed faces. The algebra
Mat(2,R) ∼= spanR{12, σ1, σ2, iσ3} itself has a disk as state space, whose proper projections
are a point or a segment, having no non-exposed faces.

We introduce precise definitions in convex geometry, see e.g. Refs. 36 and 17 for subsequent
discussions e.g. in Lemma 13.

Definition 7: Let M be a compact and convex subset of a finite-dimensional Euclidean vector
space (E, 〈·, ·〉).

• A convex subset F of M is a face of M, if for all x, y ∈ M and all 0 < λ < 1 the inclusion of
(1 − λ)x + λy ∈ F implies x, y ∈ F.

• A face of dimension zero is called extreme point and if it is not exposed, a non-exposed point.
An extreme point of S(A) will be called pure state.

• If M is non-empty, then for non-zero u ∈ E the supporting hyperplane is defined by

H (M, u) := {x ∈ E | 〈x, u〉 = max
y∈M

〈y, u〉} .

• A face F of M is called exposed if F is the intersection of M with a supporting hyperplane

F(M, u) := M ∩ H (M, u) . (15)

F = ∅ and F = M are exposed faces by definition.

The Grassmannian manifold G of real 2D subspaces of self-adjoint traceless matrices A0

= {a ∈ Asa | tr(a) = 0} will be denoted

G := {V ⊂ A0 | V is a real 2D subspace } .
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We define the angle between a subspace V ∈ G and z := (− 1
212) ⊕ 1 (pointing along the axis of the

cone),

ϕ = ϕ(V ) := �(V, z) . (16)

The state space is S(A) = conv(S(B) ∪ {02 ⊕ 1}) for the disk S(B) introduced in Example 3.
The mean value set of V ∈ G is the convex hull of the ellipse e := πV (S(B)) and of x := πV (02 ⊕ 1),

M(V ) = conv(e, x) . (17)

The problem of finding non-exposed faces at M(V ) may be solved in R3 by studying projections
of a symmetric 3D cone isometric to S(A). Explicit calculations with matrices are done in Example
1.2 in Ref. 43 by studying tangents to the elliptical boundary curve ∂e. For all subspaces V ∈ G
the projection of V onto spanR(σ1, σ2, σ3) ⊕ 0 is a subspace of spanR(σ1, σ2) ⊕ 0. Hence the state
space S(A) equals the cone C in Ref. 43 and we have the following:

Lemma 8: Let V ∈ G be a 2D plane. If ϕ = 0, then ∂e is a segment (degenerate ellipse) and the
mean value set M(V ) is a triangle. If 0 < ϕ < π

3 , then ∂e is a non-degenerate ellipse, x �∈ e and the
tangents from x to ∂e meet ∂e at two non-exposed points of M(V ). If π

3 ≤ ϕ ≤ π
2 , then M(V ) = e

is bounded by a non-degenerate ellipse ∂e.

We see that non-exposed faces are typical in the following sense. A continuous curve γ :
[0, 1] → G induces a curve of mean value sets λ 
→ M(γ (λ)). By Lemma 8 a mean value set
without non-exposed faces must be a triangle or an ellipse. If γ connects the classical mean value
set of a triangle to an ellipse, then we have �(γ (0), z) = 0 and �(γ (1), z) ∈ [π

3 , π
2 ]. Since the angle

ϕ is continuous on G, the curve γ must cross the range of angles (0, π
3 ) with mean value sets having

non-exposed faces. This range corresponds to an open subset of the Grassmannian G.

IV. CLOSURES OF EXPONENTIAL FAMILIES

The curve of 2D mean value sets M(V ) in Sec. III shows that the angle of ϕ = ϕ(V ) = π
3

divides mean value sets with non-exposed faces from others without non-exposed faces. In
Sec. IV B we show that the Gibbsian family at ϕ = π

3 , called Staffelberg family, has a discon-
tinuous entropy distance. The analysis is based on more general results about ( + 1)-closures in
Sec. IV A. In Sec. IV C we compute the ( − 1)-closure of the Staffelberg family. We will see in
Sec. IV D that the ( + 1)-closure of a Gibbsian family, in general, is not a locus of maximum-entropy
density matrices under linear constraints.

In the sequel we assume that A is a real *-subalgebra of Mat(N ,C) and that E is an exponential
family in A with canonical parameter space � and canonical tangent space V = lin(�). In Sec. IV B
through IV D we shall specialize to the algebra A defined in Example 3.

A. ( + 1)-closures of exponential families

In this section we compute the ( + 1)-closure cl(+1)(E) defined in (7). We show that it is a union
of exponential families. We also discuss aspects of the rI-closure clrI(E), defined in (6) and of the
norm closure E . Among others, we show

cl(+1)(E) ⊂ clrI(E) ⊂ E .

Strict inclusions are presented by example in Secs. IV D and IV B
In this section A denotes an arbitrary real *-subalgebra of Mat(N ,C). In the analysis of ( + 1)-

and rI-closures, subalgebras with various identities will appear, so spectral values shall be used in
some statements, see also Remark 6. On the space Asa of self-adjoint matrices we have the partial
ordering defined by a � b if and only if b − a � 0, i.e., b − a is positive semi-definite. The set
of projections {p ∈ A | p∗ = p2 = p} will be considered with this partial ordering. If p ∈ A is a
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projection, then the compressed algebra by p is

pAp := {p ap | a ∈ A} . (18)

The algebra pAp is a *-subalgebra of A with identity p. The spectral values of a ∈ Asa are the
real numbers λ such that a − λ1 is not invertible in A. The sum of spectral projections of non-zero
spectral values of a is the support projection s(a); we notice

s(a) ∈ A . (19)

We denote by λ+ (a) the maximal spectral value of a and by p+(a) ∈ A the spectral projection of
a corresponding to λ+ (a), which we call the maximal projection of a. Notice in Remark 6 that
eigenvalues cannot be used.

The free energy, defined for a ∈ Asa by F(a) := ln (tr(ea)) is useful to discuss limits of ( + 1)-
geodesics. Functions defined for projections p ∈ A by functional calculus on (pAp)sa will be
decorated by a superscript p, e.g. ln p(p) = 0, while ln (p) is not defined if p �= 1. The superscript
p = 1 will often be omitted. For a ∈ (pAp)sa we notice exp p(a) = pexp (a), expp

1 (a) = p ea

tr(p ea ) and
Fp(a) = ln tr(p ea). We use the projection A → pAp, a 
→ pap to define the exponential family in
pAp

E p := {
expp

1 (pθp) | θ ∈ �
}

.

Lemma 9: Suppose θ, u ∈ Asa and p := p+ (u) is the maximal projection of u. We have

lim
t→∞ exp1(θ + t u) = expp

1 (pθp) (20)

and

lim
t→∞

(
F(θ + t u) − t λ+(u)

) = F p(pθp) . (21)

Proof: If u has maximal spectral value λ+ (u) = 0 then by standard perturbation theory one
proves

lim
t→∞ eθ+t u = p ep θp . (22)

Since exp1(θ + α1) = exp1(θ ) holds for α ∈ R we have for arbitrary u ∈ Asa

limt→∞ exp1(θ + t u) = limt→∞ exp1(θ + t (u − λ+(u)1)) = p ep θp

tr(p ep θp) .

If u has maximal spectral value λ+ (u) = 0 then (22) and the continuity of the logarithm show
limt→∞F(θ + t u) = ln tr(p ep θp). We have F(θ + α1) = F(θ ) + α for α ∈ R, hence for arbitrary
u ∈ Asa the equality of

F(θ + t u) − tλ+(u) = F[θ + t (u − λ+(u))]

shows the second claim. �
An immediate consequence of (20) is as follows:

Proposition 10: The ( + 1)-closure of E is cl(+1)(E) = ⋃
p E p where the disjoint union extends

over the maximal projections p = p+(v) of all vectors v ∈ V (including 1 = p+(0)).

The first hurdle to tackle the rI-closure will be Lemma 13 which controls limits of the rel-
ative entropy of certain states ρ from states σ on ( + 1)-geodesics. This is remarkable since for
A = Mat(2,C)

Sρ(σ ) := S(ρ, σ )

is not continuous on the set {σ ∈ S | s(σ ) � s(ρ)} with larger support projections (19). However,
Sρ is continuous throughout the simplex S for A ∼= CN .
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Example 11 (Discontinuity of Relative Entropy): In the algebra A = Mat(2,C) of a qubit we
consider the pure state ρ := 1

2 (12 + σ1).

For real α > 0 let sα ∈ [0, 1] such that sα
α→0→ 0 and define the state

σα := (1 − sα) 1
2 (12 + cos(α)σ1 + sin(α)σ2) + sα

1
2 (12 − cos(α)σ1 − sin(α)σ2) .

Then σα
α→0→ ρ as well as

S(ρ, σα) = − 1
4α2 log(sα)(1 + o(1)) + o(1) .

E.g. if we choose c, γ > 0 and put sα := exp ( − c/αγ ), then sα
α→0→ 0 and

S(ρ, σα) = c
4α2−γ (1 + o(1)) + o(1) .

So any non-negative limit of S(ρ, σα) can be achieved for smooth paths converging to an arbitrary
point ρ in the boundary of state space.

Using maximal spectral values λ+ and maximal projections p+ we summarize Proposition 2.9
in Ref. 43.

Lemma 12: If u ∈ Asa is a non-zero self-adjoint matrix, then the exposed face F(S(A), u)
consists of the states ρ ∈ S(A) such that 〈ρ, u〉 = λ+ (u) or, equivalently, s(ρ) � p+ (u).

The lemma says that the exposed face F(S(A), u) is the state space of the compressed algebra
pAp discussed in (18) for p := p+ (u). Moreover, it follows that all faces of S(A) are exposed, see
e.g. Sec. 2.3 in Ref. 43.

The derivative of the exponential function for a, b ∈ Asa is

D|a exp(b) =
∫ 1

0
eyabe(1−y)ady .

It implies the derivative of the free energy F

D|a F(b) = 〈b, exp1(a)〉 . (23)

The derivative of the exponential for A = Mat(N ,C) is explained by power series expansion e.g. in
Ref. 24 and may be generalized to any *-subalgebra A of Mat(N ,C) by left- and right-multiplication
with the identity 1 in A.

Lemma 13: Suppose θ, u ∈ Asa such that u is not a multiple of the identity 1 in A and let
p := p+ (u). If ρ ∈ F(S(A), u), then Sρ(exp1(θ + t u)) is strictly monotone decreasing with t ∈ R
and

Sρ

(
expp

1 (p θp)
) = lim

t→∞ Sρ

(
exp1(θ + t u)

) = inf
t∈R

Sρ

(
exp1(θ + t u)

)
.

Proof: By definition (15) of an exposed face we have for τ ∈ S(A) and for ρ ∈ F(S(A), u) the
inequality 〈u, τ − ρ〉 ≤ 0. Since u is not proportional to 1, its maximal projection is p := p+ (u)
is not 1. If τ is invertible, then s(τ ) = 1 and it follows from Lemma 12 that τ �∈ F(S(A), u). This
implies the strict inequality 〈u, τ − ρ〉 < 0 to hold for all invertible states τ = exp1(θ + tu) with
t ∈ R. Using (23) we have for all t ∈ R

∂
∂λ

Sρ ◦ exp1(θ + t u) = 〈u, exp1(θ + t u) − ρ〉 < 0 .

We conclude that Sρ ◦ exp1(θ + t u) is strictly monotone decreasing in t .
The limit of the ( + 1)-geodesic g: t 
→ exp1(θ + t u) is calculated in (20),

σ := limt→∞ g(t) = expp
1 (p θp) .
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The states ρ and σ belong to the compressed algebra pAp defined in (18) and σ is invertible in
pAp. Then

−S(ρ, σ ) − S(ρ) = tr
(
ρ lnp ◦ expp

1 (p θp)
) = tr(ρ θ ) − F p(p θp)

= limt→∞
[
tr(ρ θ ) + t λ+(u) − F(θ + t u)

]
= limt→∞

[
tr
(
ρ (θ + t u)

) − F(θ + t u)
]

= limt→∞ tr
(
ρ ln ◦ exp1(θ + t u)

) = limt→∞ [−S(ρ, g(t)) − S(ρ)] .

We have used (21) in the third step. The result is limt→∞Sρ ◦ g(t) = Sρ(σ ). Since Sρ ◦ g is monotone
decreasing in λ we have inft∈R Sρ ◦ g(t) = Sρ(σ ). �

We show that ( + 1)-closures do not decrease the entropy distance, defined in (5), from expo-
nential families.

Proposition 14: If v �= 0 belongs to the canonical tangent space V of the exponential family
E and ρ to the exposed face F(S(A), v), then dE (ρ) = dE p+(v) (ρ). For arbitrary ρ ∈ S(A) we have
dE (ρ) = inf{S(ρ, σ ) | σ ∈ cl(+1)(E)}.

Proof: We prove the first statement, let p := p+(v). If p+(v) = 1, then there is nothing to prove.
Otherwise we have by Lemma 13 and Lemma 9

dE (ρ) = inf
σ∈E

S(ρ, σ ) = inf
θ∈�

inf
t∈R

S(ρ, exp1(θ + tv))

= inf
θ∈�

S(ρ, lim
t→∞ exp1(θ + tv)) = inf

θ∈�
S(ρ, expp

1 (pθp)) = dE p (ρ) .

For the second statement, let ρ ∈ S(A) be arbitrary. By Proposition 10 it suffices to show
dE p (ρ) ≥ dE (ρ) for all projections p of the form p = p+(v) where v ∈ V is non-zero. If ρ

/∈ F(S(A), v), then s(ρ) �� p by Lemma 12. So for all σ ∈ E p we have S(ρ, σ ) = ∞. Otherwise,
the equality dE p (ρ) = dE (ρ) follows from the first assertion above. �

Corollary 15: We have cl(+1)(E) ⊂ clrI(E) ⊂ E .

Proof: The first inclusion follows from Proposition 14: If ρ ∈ cl(+1)(E), then dE (ρ)
= inf{S(ρ, σ ) | σ ∈ cl(+1)(E)} = 0 shows ρ ∈ clrI(E).

The second inclusion follows from the Pinsker-Csiszár inequality (see e.g. p. 40 in Ref. 32),
which says that ‖ρ − σ‖2

1 ≤ 1
2 S(ρ, σ ) holds for all states ρ, σ ∈ S(A) with the trace norm ‖a‖1

:= tr(
√

a∗a) for a ∈ A. �
Finally we prove an upper bound for the norm closure of a Gibbsian family.

Lemma 16: Let E be a Gibbsian family, i.e. � = V . Then E ⊂ E ∪ ⋃
v F

(
S(A), v

)
where the

union of exposed faces extends over all non-zero vectors v ∈ V .

Proof: We assume θ i⊂� and that ρi := exp1(θi ) ∈ E is a converging sequence with limit
ρ := limi → ∞ρ i. If πV (ρ) ∈ ri(M(V )), then there is a neighborhood U (πV (ρ)) ⊂ ri(M(V )) con-
taining πV (ρi ) for large i. Choosing this neighborhood sufficiently small we can assume its closure
X is a compact subset of ri(M(V )). As discussed in (11) the map πV ◦ exp1 : V → ri(M(V )) is a
real analytic diffeomorphism. Using the inverse mapping, the set log0 ◦πE (X ) ⊂ V is compact and
it contains θ i for large i. It follows ρ ∈ E .

Otherwise, if πV (ρ) belongs to the boundary of the mean value set, then by Theorem 13.1 in
Ref. 36 there is a non-zero vector v ∈ V such that πV (ρ) ∈ F(M(V ), v). Then the state ρ lies in the
exposed face F(S(A), v) for the same vector v. �
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FIG. 3. The Staffelberg family E sketched by ( + 1)-geodesics. Left: The cone about E is the state space S(A). The ellipse
below is the boundary of the mean value set M(V ). The generating line [ρ(0), 02 ⊕ 1] of the cone S(A), with midpoint c, is
perpendicular to V . Right: E has equal ( + 1)- and rI-closures, they cover the punctured base circle of S(A) (large circle) with
ρ(0) missing (small circle). These closures include c. The norm closure of E contains in addition the entire segment [ρ(0), c].

B. The Staffelberg family

The exponential family E discussed in this section is an example of a discontinuous maximum-
entropy inference announced in the Introduction. That exponential family has the form of the
Staffelberg table mountain, in the natural preserve of Fränkische Schweiz—Veldensteiner Forst. Its
mean value set appears at the angle (16) of ϕ = π

3 in the metamorphosis of Figure 2. Smaller angles
ϕ have non-exposed faces, larger angles do not. We explain the geometrical components of the
closures cl(+1)(E) = clrI(E) � E . Then we address continuity issues.

Definition 17: The Staffelberg family, depicted in Figure 3, is the Gibbsian family

E := exp1

(
spanR{σ1 ⊕ 0, σ2 ⊕ 1})

in the *-subalgebra A ⊂ Mat(3,C) defined in Example 3.

The self-adjoint matrices in A are Asa = spanR{12 ⊕ 0, σ1 ⊕ 0, σ2 ⊕ 0, 02 ⊕ 1}, the state space
S(A) is a 3D cone. We use the notation

B := {ρ(α) | α ∈ (0, 2π )}
for the punctured base circle of S(A) with ρ(0) = 1

2 (12 + σ2) ⊕ 0 missing. The symmetry axis l of
S(A) goes through the tracial state 1

31 and through the apex 02 ⊕ 1, where it meets the generating
lines of the cone S(A) under an angle of π

6 . The generating line [ρ(0), 02 ⊕ 1] is perpendicular to
V . We denote its midpoint by

c := 1
2 (ρ(0) + 02 ⊕ 1) .

The canonical tangent space V = � of E is spanned by v1 := σ1 ⊕ 0 and v2 := σ2 ⊕ 1 − 1
31. The

vector z = − 1
212 ⊕ 1 is perpendicular to v1, so

ϕ = �(V, z) = �(v2, z) = arccos( 1
2 ) = π

3

as claimed. The basis vectors of V connect special points in S(A),

v1 = ρ(π
2 ) − ρ( 3

2π ) and v2 = 4
3 (c − ρ(π )) .
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The *-algebra generated by σ 2 ⊕ 1 is isomorphic to R2 and it has the segment [ρ(π ), c] as its
state space. The ( + 1)-geodesic {exp1(λv2) | λ ∈ R} is included in E and it covers the invertible
states in [ρ(π ), c]. The *-algebra generated by ρ(0), ρ(π ), and 02 ⊕ 1 is isomorphic to R3, its state
space is the equilateral triangle spanned by these generators, see Figure 3, left.

For discussions of ( + 1)-geodesics in E we use a redundant parametrization and define for real
α, s, t

E(α, s, t) := exp1

{
t [cos(α)(σ2 ⊕ 1) + sin(α)σ1 ⊕ 0] (24)

+ s [− sin(α)(σ2 ⊕ 1) + cos(α)σ1 ⊕ 0]
}
.

Let x := scos (α) + t sin (α), y := − s sin (α) + t cos (α), b :=
√

x2 + y2 = √
s2 + t2 and

η := 2 cosh (b) + e− ssin (α) + tcos (α). Then

E(α, s, t) = 1
η

{
[cosh(b)12 + sinh(b)(xσ1 + yσ2)/b] ⊕ e−s sin(α)+t cos(α)

}
.

The vectors v1 and v2 are completed by v3 := 02 ⊕ 1 − ρ(0) to an orthogonal basis of the traceless
matrices A0 = V + Rz. We have

〈E(α, s, t), σ1 ⊕ 0〉 = 1
η

[
2 sinh(b)x/b

]
(25)

〈E(α, s, t), σ2 ⊕ 1〉 = 1
η

[
2 sinh(b)y/b + e−s sin(α)+t cos(α)

]
〈E(α, s, t), 02 ⊕ 1 − ρ(0)〉 = 1

η

[ − cosh(b) − sinh(b)y/b + e−s sin(α)+t cos(α)] .

We discuss closures of the Staffelberg family and its entropy distance.

Theorem 18: The Staffelberg family E has ( + 1)-closure and rI-closure equal to cl(+1)(E)
= clrI(E) = E ∪ B ∪ {c}. The norm closure is E = clrI(E) ∪ [ρ(0), c]. The entropy distance of ρ

∈ [ρ(0), 02 ⊕ 1] from E is dE (ρ) = S(ρ, c). The restricted projection πV |clrI(E) is a bijection onto the
mean value set M(V ).

Proof: By Proposition 10 the ( + 1)-closure of E is a union of exponential families
Eq = {

expq
1(qθq) | θ ∈ V

}
for maximal projections q. In place of the maximal projections of v �= 0

in V we consider equivalently the maximal projections of the vectors

u(α) := sin(α)σ1 ⊕ 0 + cos(α)(σ2 ⊕ 1) , α ∈ R . (26)

There are two cases depending on the spectral projections in the orthogonal sum

u(α) = ρ(α) − ρ(α + π ) + 02 ⊕ cos(α) .

The maximal eigenvalue of u(α) is constant one. If α �= 0 mod 2π , then the maximal projection of
u(α) is ρ(α) and has rank one. We get

Eρ(α) =
{

expρ(α)
1 (ρ(α)θρ(α)) | θ ∈ V

}
= {ρ(α)}

proving B ⊂ cl(+1)(E). If α = 0 mod 2π , then the maximal projection of u(0) is p := ρ(0)
+ 02 ⊕ 1 = 2c. Since p(σ 1 ⊕ 0)p = 0 and p(σ 2 ⊕ 1)p = p the canonical parameter space of E p

consists of multiples of the identity p in pAp, p�p = pV p = Rp. So is E p = {c}, we conclude
cl(+1)(E) = E ∪ B ∪ {c}.

Lemma 16 provides an upper bound on the norm closure E in terms of faces of S(A) exposed
by vectors in V , and Lemma 12 describes these faces in terms of maximal projections

F(S(A), u(α)) = {ρ ∈ S(A) | s(ρ) � p+(u(α))} .

For α �= 0 mod 2π the maximal projection ρ(α) of u(α) has rank one and the exposed face is
F(S(A), u(α)) = {ρ(α)}. The projection p+ (u(0)) = p above gives the segment [ρ(0), 02 ⊕ 1]
= F(S(A), u(0)). We obtain

E ⊂ E ∪ B ∪ [ρ(0), 02 ⊕ 1] .
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The inclusions cl(+1)(E) ⊂ E and B ⊂ cl(+1)(E) show B ⊂ E . We prove that exactly the part [ρ(0),
c] of the segment [ρ(0), 02 ⊕ 1] belongs to E .

We prove that at most the half segment [ρ(0), c] belongs to E by showing that E is included in
the closed half space 〈a, v3〉 ≤ 0. This is sufficient because v3 is parallel to [ρ(0), 02 ⊕ 1] and

〈ρ(0), v3〉 = −1 , 〈c, v3〉 = 0, and 〈02 ⊕ 1, v3〉 = 1 .

We look at the polar parametrization of E , defined with (24) as

R × R+
0 → E, (α, t) 
→ E(α, 0, t) .

The normalization factor η is strictly positive, so 〈E(α, 0, t), v3〉 ≤ 0 by (25) is equivalent to

z(α, t) := η〈E(α, 0, t), v3〉 = − cos(α) sinh(t) − cosh(t) + ecos(α)t ≤ 0 .

For t = 0 we have z(α, 0) = 0 while for t ≥ 0 and arbitrary α ∈ R we have

±z(α, t) + ∂
∂t z(α, t) = (cos(α) ± 1)

[
ecos(α)t − e±t

] ≤ 0 .

This implies ∂
∂t z(α, t) ≤ 0 and by integration z(α, t) ≤ 0.

We show [ρ(0), c] ⊂ E . The state ρ(0) lies in the closure of B so we still have to approximate for

λ ∈ (0, 1] the state τ (λ) := (1 − λ
2 )ρ(0) ⊕ λ

2 from within E . For t > 0 we choose α(t) :=
√

2
t ln( 2−λ

λ
).

Then limt→∞α(t) = 0 and limt→∞ e(cos(α(t))−1)t = λ
2−λ

hold. Expanding by e− t we have

limt→∞ E(α(t), 0, t) =
1
2 (12+σ2)⊕ λ

2−λ

1+ λ
2−λ

= τ (λ) .

We calculate the rI-closure. This is bounded by Corollary 15 between ( + 1)- and norm closures

cl(+1)(E) = E ∪ B ∪ {c} ⊂ clrI(E) ⊂ E ∪ B ∪ [ρ(0), c] = E .

It remains to discuss states ρ ∈ [ρ(0), 02 ⊕ 1] = F(S(A), u(0)). Proposition 14 and E p = {c} show

dE (ρ) = dE p (ρ) = S(ρ, c) .

So ρ ∈ clrI(E) holds for ρ ∈ [ρ(0), 02 ⊕ 1] if and only if ρ = c. This shows clrI(E) = cl(+1)(E).
We show that πV |clrI(E) is a bijection onto M(V ). The boundary of the mean value set M(V ) is

by (17) and by Lemma 8 equal to the ellipse

∂M(V ) = πV (B ∪ {ρ(0)}),
so πV restricted to the circle B∪{ρ(0)} is a bijection. Since c lies on the segment [ρ(0), 02 ⊕ 1]
which is perpendicular to V , it substitutes ρ(0) in that bijection. Another bijection is the mean value
chart πV |E : E → ri(M(V )), see (11). The two latter bijections assembled prove the claim. �

Corollary 19: The entropy distance dE : S(A) → [0, log(3)] from the Staffelberg family is
discontinuous at ρ(0).

Proof: By the previous theorem we have dE (ρ(0)) = S(ρ(0), c) = ln(2) while dE ≡ 0 on the
punctured base circle B of the cone S(A). But ρ(0) ∈ B. �

Corollary 20: The mean value parametrization πE : ri(M(V )) → E of the Staffelberg family has
no continuous extension to the mean value set M(V ); it has no continuous extension to πV (ρ(0)).

Proof: Since the segment [ρ(0), 02 ⊕ 1] belongs to the norm closure of E and since this
segment is perpendicular to V , the mean value parametrization πE : ri(M(V )) → E does not extend
continuously to πV (ρ(0)). �

We address the maximum-entropy principle.
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Theorem 21: The rI-closure of the Staffelberg family is a set of maximum-entropy density
matrices, clrI(E) = {argmaxρ∈F(v)S(ρ) | v ∈ M(V )}. This holds for fibers F(v) := (v + V ⊥) ∩ S(A)
as well as for

F(v) := (v + V ⊥) ∩ S(Mat(3,C)).

Proof: Since the Staffelberg family E is included in the state space S(A), the Pinsker-Csiszár
inequality, recalled in Corollary 15, shows that E has the same rI-closure in both algebras A and
Mat(3,C). The mean value chart (11) shows that the mean value set M(V ) is the same for both
algebras. So the bijection πV |clrI(E) from the rI-closure onto the mean value set, proved in Theorem
18, also applies to both algebras.

We discuss the inverse M(V ) → clrI(E). Its restriction to the interior of the mean value set
ri
(
M(V )

) → E is the mean value parametrization of E and this is known to have the maximum-
entropy property (14).

Let us now consider the boundary of the mean value set M(V ), which is by (17) and by Lemma
8 equal to the ellipse

∂M(V ) = πV
(
B ∪ {ρ(0)}) .

The fibers F (̃v) for points ṽ ∈ ∂M(V ) are faces of the state space S(A), see Sec. 5 in Ref. 42.
Indeed they are the set of state space faces F(S(A), v) which are exposed by a non-zero v ∈ V .
Using Lemma 12 and consulting the list of maximal projections of vectors v ∈ V in Theorem 18
these faces are the points on the punctured circle B and the segment [ρ(0), 02 ⊕ 1]. Maximizers of
the von Neumann entropy on these fibers are the points on B and the centroid c in the segment. This
set completes E to its rI-closure by Theorem 18.

In the larger C*-algebra Mat(3,C) the projection ρ(0) + 02 ⊕ 1 corresponds to the face {ρ
∈ S(Mat(3,C)) | s(ρ) � ρ(0) + 02 ⊕ 1} which is isomorphic to the Bloch ball. So the maximizer
of the von Neumann entropy in the fiber (v + V ⊥) ∩ S(Mat(3,C)) is c as before. �

We draw two conclusions about asymptotics of the maximum-entropy inference defined in
(1)–(3).

Remark 22: First, there exist invertible states ρ that such that ρ̂(n) has variance of order O(1/n)
with an arbitrary large constant.

We consider the maximum-entropy inference with respect to the observables a1 := σ 1 ⊕ 0 and
a2 := σ2 ⊕ 1 − 13/3 spanning the canonical tangent space V of the Staffelberg family. To start with,
let the state ρ of the quantum system be on the segment [ρ(0), 02 ⊕ 1], e.g. equal to the maximum-
entropy state c = 1

2 (ρ(0) + 02 ⊕ 1), and recall the notation ρ(0) = 1
2 (12 + σ2) ⊕ 0 in Example 3.

The random variable a2(1) becomes sharp 2
3 . The random variable a1(1) becomes sharp 0 in the state

02 ⊕ 1 and uniformly distributed on {− 1, + 1} in the state ρ(0). It is governed by the probability
vector ( 1

4 , 1
2 , 1

4 ) if the system is in the state c.
Let ρ be invertible and close to c. The random variable a1(n) has variance 1

n times the variance
of a1(1), the latter is ≈ 1

2 . Mean value tuples m(a) = (m1(a), m2(a)) := (〈a1, a〉, 〈a2, a〉) are assigned
to self-adjoint matrices a in particular to density matrices. Since the variance of a1(n) is ≈ 1

2/n,
it suffices to show that the partial derivative of the inference in the m1-direction diverges along a
sequence of points converging to m(c) = (0, 2

3 ). We consider the linear functional f : Asa → R, a

→ 〈02 ⊕ 1 − ρ(0), a〉. The functional f completes the m1-m2-plane to an orthogonal coordinate
system of the state space. Its value on the segment [ρ(π ), c] of maximum-entropy states is constant
to zero. The mean value tuples of this segment lie on a segment s in the m1-m2 space, pointing in
the m2-direction. The mean value tuples of the elliptic arc of rank-two states σ having f (σ ) = − 1

2 ,
they all lie on an elliptic arc e in the m1-m2 space and s ∩ e = {m(c)}. By the geometry of the cone
S(A), the f-value of the inference of points on e\{m(c)} is less than or equal − 1

2 .
Through each point x on e we draw the perpendicular to s, it meets s in a point y. The line

through the inference of x and the inference of y has a slope of at least 1
2/‖y − x‖. By the mean
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value theorem, the partial derivative of the inference in the m1-direction is at least 1
2/‖y − x‖ at

some point on the open segment ]x, y[. The claim follows by letting x converge to m(c).
Second, the non-generic choice of ρ on the segment [ρ(0), 02 ⊕ 1] makes it possible that ρ̂(n)

diverges or converges to a state which is not a maximum-entropy state. This is suggested by Theorems
18 and 21 because the whole segment [ρ(0), c] belongs to the closure of E while only c is a state
of maximum entropy under the given constraints. It will be interesting to calculate the probability
distribution of limits of ρ̂(n) on the segment [ρ(0), c].

C. ( + 1)-asymptotics and ( − 1)-closure of the Staffelberg family

We show that the ( − 1)-closure of the Staffelberg family E equals its rI-closure. This follows
from an asymptotic analysis of its ( + 1)-geodesics. See (7) and (8) for definitions of these closures.

We use the parametrization E(α, s, t) of E defined in (24) and a coordinate system spanned by
(σ 2 ⊕ 1) and (σ 1 ⊕ 0). Coefficients of points on E are the first two numbers in (25), they describe
projection onto V :

g := 〈E(α, s, t), σ2 ⊕ 1〉 = 1
η

[
(eb − e−b)y/b + e−s sin(α)+t cos(α)

]
h := 〈E(α, s, t), σ1 ⊕ 0〉 = 1

η

[
(eb − e−b)x/b

]
.

We consider the asymptotic slope in the (σ 2 ⊕ 1)-(σ 1 ⊕ 0)-coordinate system

κ(α, s) := lim
t→∞

dh

dg
= lim

t→∞

dh
dt
dg
dt

= lim
t→∞

η
d(hη)

dt − (hη) dη

dt

η
d(gη)

dt − (gη) dη

dt

. (27)

The coordinates {(〈ρ, σ2 ⊕ 1〉, 〈ρ, σ1 ⊕ 0〉) | ρ ∈ S(A)} of the mean value set fill the unit disk.
Projections of ( + 1)-geodesics hit the unit circle for s = 0, they are tangential to the unit circle for
every s �= 0:

Lemma 23: For all α ∈ R and all s ∈ R we have (g, h)
t→∞−→ (cos(α), sin(α)). The asymptotic

slope of ( + 1)-geodesics through the tracial state (s = 0) is

κ(α, 0) =
{

0 if α = 0 ,

− cot( α
2 ) if α �= 0 .

The asymptotic slope of ( + 1)-geodesics missing the tracial state (s �= 0) is

κ(α, s) = − cot(α) .

Proof: The ( + 1)-geodesic limit t → ∞ follows from (20) and from the discussion of maximal
projections in Theorem 18. Then limt→∞(g, h) follows.

We first compute the asymptotical slope for ( + 1)-geodesics through the tracial state s = 0. We
have

(η d(hη)
dt − (hη) dη

dt )e−t(1+cos(α))

= sin(α)(1 + e−2t + 4e−t−t cos(α) − cos(α) + e−2t cos(α))

and

(η d(gη)
dt − (gη) dη

dt )e−t(1+cos(α))

= −(1 − cos(α))2 + e−2t + cos(α)(2e−2t + 4e−t−t cos(α) + e−2t cos(α)) .

From this and (27) we get the desired result, studying α = 0 and α = π apart.
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FIG. 4. Projected ( + 1)-geodesics in the Staffelberg family. Left: geodesics through the tracial state; Right: two families of
parallel geodesics, those through the tracial state are dashed.

The asymptotical slope for ( + 1)-geodesics missing the tracial state (s �= 0) follows from a third
order Taylor expansion at t = ∞. If α �= 0 modulo 2π then

(η d(hη)
dt − (hη) dη

dt ) = − s

t2
cos(α) + O( 1

t3 )

(η d(gη)
dt − (gη) dη

dt ) = s

t2
sin(α) + O( 1

t3 ) .

For α = 0 we have

(η d(hη)
dt − (hη) dη

dt ) = −2s

t2
+ O( 1

t3 )

(η d(gη)
dt − (gη) dη

dt ) = O( 1
t3 )

completing the claim. �
Some projected ( + 1)-geodesics of the Staffelberg family are drawn in Figure 4. As a fact not

used in the sequel, Lemma 23 shows that the two asymptotic tangents t → ± ∞ of a projected
( + 1)-geodesic through the tracial state (s = 0) intersect orthogonally at (1, 0) for α �= 0, π . While
the right angle is not invariant under affine reparametrizations, these tangents intersect in V at the
projection of the cliff c = 1

2 (ρ(0) + 02 ⊕ 1) of the Staffelberg family.

Lemma 24. For all s ∈ [ − 1, 1] and all t ≥ 1 we have uniformly in s

‖E(0, s, t) − c‖2 = O(t−1) .

Proof: By Taylor expansion b = t + s2

2t + O(t−2), we have uniformly for s ∈ [ − 1, 1]

E(0, s, t) =

⎛⎜⎝ cosh(b) (s − i t) sinh(b)
b 0

(s + i t) sinh(b)
b cosh(b) 0

0 0 et

⎞⎟⎠/(
2 cosh(b) + et

) = c + O(t−1) .

This proves the statement, since ‖a‖2 =
√∑

k,� |ak,�|2. �
Theorem 25: For the Staffelberg family E the ( − 1)-closure equals the ( + 1)- and the rI-closure,

cl(−1)(E) = cl(+1)(E) = clrI(E).

Proof: The equality cl(+1)(E) = clrI(E) was shown in Theorem 18. Since ( − 1)-geodesics are
included in E we clearly have cl(−1)(E) ⊂ E . On the other hand, in every fiber (v + V ⊥) ∩ S(A) with
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v ∈ M(V ) there is at least one point of the ( − 1)-closure (choose a segment ]u, v[⊂ ri(M(V )) and
lift it to E through the mean value parametrization). By Theorem 18 there is a bijection

πV |E\S : E \ S → M(V ) \ {m}
for the segment S := [ρ(0), 02 ⊕ 1] and its projection m := πV (c). The three arguments combined
show E \ S = cl(−1)(E) \ S.

It remains to discuss states ρ ∈ S, whether they belong to cl(−1)(E). The point c clearly does since
the unparametrized ( − 1)-geodesic ]ρ(π ), c[ belongs to E . We finish by showing {c} = S ∩ cl(−1)(E).

The ( − 1)-geodesic from ρ(π ) to c is also a ( + 1)-geodesic, parametrized for s = 0 by

gs(t) := E(0, s, t) .

Using (20) we see that for all real s the geodesic gs has the limit c when t → + ∞, its projection
πV (gs) has the limit m = πV (c). For s �= 0 the asymptotic tangent of πV (gs) is tangential to the
elliptical boundary ∂M(V ) of the mean value set by Lemma 23. This implies that the projections
πV (g−1) and πV (g+1) concatenate to a closed smooth curve in M(V ) which is tangential to ∂M(V )
at m. Using the mean value chart (11) of E , it is clear that this curve bounds the set

U := {πV (gs(t)) | −1 ≤ s ≤ 1, t ∈ R} ⊂ M(V ) .

Let h be any ( − 1)-geodesic in E with limit ρ in the segment S. If we choose any sequence ρn

⊂ h such that ρ = limn→∞ρn, then θn := log0(ρn) diverges in the norm (otherwise the contradiction
ρ ∈ E follows). As the boundary of U is tangential to the ellipse ∂M(V ) at m, there is ε > 0 such
that

πV (h) ∩ {v ∈ V | ‖v − m‖2 < ε} ⊂ U .

So the points πV (ρn) lie in U for large n. Since the convergence of the ( + 1)-geodesics gs to c is
uniform (for − 1 ≤ s ≤ 1) by Lemma 24, the states ρn converge to c. �
D. The Swallow family

We now consider 2D families E = exp1(V ) in the metamorphosis of Figure 2 that have non-
exposed faces in the mean value setM(V ). By Lemma 8 this happens for angles ϕ(V ) ∈ (0, π/3). We
prove that the ( + 1)-closure cl(+1)(E) is too small to serve as a set of entropy maximizers under linear
constraints. The problem is that the two non-exposed points of the mean value set are not covered
by cl(+1)(E) in the projection onto V . Calculations become easy for ϕ = arccos(

√
2/5) ≈ 0.28π and

we then call E the Swallow family because it looks like the beak of a bird:

Definition 26: The Swallow family, depicted in Figure 5, is the Gibbsian family

E := exp1

(
spanR{σ1 ⊕ 1, σ2 ⊕ 1})

in the *-subalgebra A ⊂ Mat(3,C) defined in Example 3.
The canonical tangent space V = � of E is spanned by the vectors of equal length

v1 := σ1 ⊕ 1 − 1
31 and v2 := σ2 ⊕ 1 − 1

31. The vector z = − 1
212 ⊕ 1 is perpendicular to v2 − v1,

so indeed
ϕ = �(V, z) = �(v1 + v2, z) = arccos(

√
2/5) .

The pure states ρ(0) = 1
2 (12 + σ2) ⊕ 0 and ρ(π

2 ) = 1
2 (12 + σ1) ⊕ 0 on the base circle of the conic

state space S(A) are crucial for the Swallow family.

Theorem 27: The ( + 1)-closure of the Swallow family E is the union of E , of the segments]ρ(0),
02 ⊕ 1[ and ]ρ(π

2 ), 02 ⊕ 1[ (rank-two states) and of the pure states 02 ⊕ 1 and {ρ(α) | π
2 < α < 2π}.

The ( − 1)-rI-and norm closures are

cl(−1)(E) = clrI(E) = E = cl(+1)(E) ∪ {ρ(0), ρ(π
2 )} .
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Ρ Π 2

Ρ 0

02 1

FIG. 5. The Swallow family E sketched by ( + 1)-geodesics. The cone about E is the state space S(A). Its generating lines
[ρ(0), 02 ⊕ 1] and [ρ( π

2 ), 02 ⊕ 1] belong to the rI-closure of E but the pure states ρ(0) and ρ( π
2 ) do not belong to the

( + 1)-closure of E . They project to the non-exposed points of the mean value set M(V ) whose boundary is drawn below.

Proof: First we calculate the ( + 1)-closure cl(+1)(E) using Proposition 10. For α ∈ R we have
the orthogonal sum

u(α) := sin(α)(σ1 ⊕ 1) + cos(α)(σ2 ⊕ 1) = ρ(α) − ρ(α + π ) + 02 ⊕ √
2 cos(α − π

4 ) .

The maximal projections for α = 0 and π
2 are

p := p+(u(0)) = ρ(0) + 02 ⊕ 1 and q := p+(u( π
2 )) = ρ( π

2 ) + 02 ⊕ 1 .

For 0 < α < π
2 we have p+ (u(α)) = 02 ⊕ 1 and for π

2 < α < 2π we have p+ (u(α)) = ρ(α).
Calculating the corresponding exponential families we observe pAp ∼= C2 and since p(σ 1 ⊕ 1)p

= 02 ⊕ 1, the exponential family E p = expp
1 (p�p) has the canonical parameter space

R(02 ⊕ 1 − ρ(0)) ∼= R(1,−1) ⊂ C2 .

The analogue arguments apply to q, so the exponential family

E p = ]ρ(0), 02 ⊕ 1[ resp. Eq = ]ρ(π
2 ), 02 ⊕ 1[

consists of the invertible states in the compressed algebra pAp resp. qAq. All other maximal
projections r of elements of v �= 0 of V have rank one and produce the exponential family Er

= {
expr

1(rθr ) | θ ∈ V
} = {r}. This completes the calculation of the ( + 1)-closure of E .

In the second step we prove that the points ρ(0) and ρ(π
2 ) missing in the ( + 1)-closure be-

long to the rI-closure of E . Lemma 12 describes the exposed face F(S(A), u(0)) = [ρ(0), 02 ⊕ 1]
= S(pAp), containing the pure state ρ(0). Then Proposition 14 shows

dE (ρ(0)) = dE p (ρ(0)) = dcl(+1)(E p)(ρ(0)) .

Since

cl(+1)(E p) = cl(+1)( ]ρ(0), 02 ⊕ 1[ ) = [ρ(0), 02 ⊕ 1]

we get dE (ρ(0)) = d[ρ(0),02⊕1](ρ(0)) = 0 and this implies ρ(0) ∈ clrI(E). The analogue arguments
show ρ(π

2 ) ∈ clrI(E).
By the same method as in Theorem 18 an upper bound on the norm closure E can be stated in

terms of maximal projections in V . These projections are listed above, the corresponding faces are the
pure state 02 ⊕ 1, the arc of pure states ρ(α) for π

2 < α < 2π and the two segments [ρ(0), 02 ⊕ 1]
and [ρ(π

2 ), 02 ⊕ 1] (the state spaces of the algebras pAp ∼= qAq ∼= C2). Thus E ⊂ cl(+1)(E) ∪
{ρ(0), ρ(π

2 )} follows from the above description of the ( + 1)-closure. Since ρ(0) and ρ(π
2 ) belong
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to the rI-closure and since cl(+1)(E) ⊂ clrI(E) ⊂ E holds by Corollary 15 we have shown clrI(E)
= E = cl(+1)(E) ∪ {ρ(0), ρ(π

2 )}. �
Theorem 28: The projection πV |clrI(E) is a bijection onto the mean value set M(V ), the non-

exposed points of M(V ) are πV (ρ(0)) and πV (ρ(π
2 )). The rI-closure of the Swallow family is a set

of maximum-entropy density matrices,

clrI(E) = {argmaxρ∈F(v)S(ρ) | v ∈ M(V )}
for fibers F(v) := (v + V ⊥) ∩ S(A).

Proof: The relative interiors of faces of the mean value set M(V ) are a partition of M(V ).36

Each face F of M(V ) is the projection to V of the inverse projection (F + V ⊥) ∩ S(A), which is a
face of S(A). The relative interior of the inverse projection of F projects onto the relative interior of
F; we show that these projections are bijections for the algebra A, for the Swallow family E and for
all faces F in the boundary of the mean value set M(V ).

The two non-exposed points πV (ρ(0)) and πV (ρ(π
2 )) at the ellipse with corner M(V ) are

computed in case 3 of Example 1.2 in Ref. 43 studying tangents. The present setting fits into
Example 1.2 in Ref. 43 by choosing there g := 1√

2
(1,−1, 0) and h := 1√

2
(1, 1, 0). The inverse

projections (ρ(0) + V ⊥) ∩ S(A) and (ρ(π
2 ) + V ⊥) ∩ S(A) are faces of the state space S(A) and it

is proved in case 3 of Sec. 3.3 in Ref. 43 that these faces are the extremal points ρ(0) and ρ(π
2 ) and

that they are not larger.
Every exposed face F = F(M(V ), v) for non-zero v ∈ V is actually the projection of the

exposed face F(S(A), v), see Sec. 3.1 in Ref. 43. These faces are computed in the last paragraph of
Theorem 27. A missing bijectivity of their projections onto V is only possible for the two segments,
but it does not occur because the two segments cover the two boundary segments of M(V ).

The maximum-entropy problem is solved for points in ri(M(V )) in (14). Since the projection of
(∂M(V ) + V ⊥) ∩ S(A) onto V is a bijection onto ∂M(V ), the maximum-entropy problem is trivial
for boundary points of M(V ). �

Remark 29:

a) The Swallow family is suitable to demonstrate that the extreme points of a mean value set M(V )
are in general not covered by the projections πV ( p

tr(p) ) for maximal projections p = p+(v),
v ∈ V , as is claimed in Theorem 1 (e) in Ref. 45.

Let B denote one of the algebras A or Mat(3,C) where A ⊂ Mat(3,C) is the *-subalgebra
defined in Example 3. Since A and Mat(3,C) have the same identities 1 = 13 we can argue
with eigenvalues to calculate the maximal projections of vectors in V . Moreover, the mean
value set MB(V ) is well-defined, see Sec. 3.4 in Ref. 43. For faces F of the mean value set the
lifted faces (F + V ⊥) ∩ S(B) are of the form {ρ ∈ S(B) | s(ρ) � p} for projections p ∈ B, see
Sec. 2.3 in Ref. 43. The necessary projections p are computed recursively from V , see Theorem
3.7 or Remark 3.10 in Ref. 43. This gives the same set of projections for both algebras A and
Mat(3,C).

Now, the pure state ρ(0) (and ρ(π
2 )) is not on the list of maximal projections of vectors

in V provided in the first paragraph of Theorem 27. On the other hand, as discussed in the
second paragraph of Theorem 28, the state ρ(0) is the unique state in S(A) that projects to the
non-exposed point πV (ρ(0)) of the mean value set.

b) There is no ( + 1)-geodesic in the Swallow family E that meets ρ(0) asymptotically. Calcula-
tion of clrI(E) in Theorem 27 is done by two limits of ( + 1)-geodesics. One of the limits is
implicit in the equation dE (ρ(0)) = dE p (ρ(0)). Only a second ( + 1)-geodesic in E p meets ρ(0)
asymptotically.

V. MAXIMIZERS OF THE ENTROPY DISTANCE

We now study local maximizers of the entropy distance dE from an exponential family E , a
question which was motivated in Sec. I A in the context of infomax principles. We have to restrict
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to Gibbsian families since the mean value chart (11) is only available for these exponential families
in the present article.

We show that a local maximizer ρ of dE carries a clear imprint from its projection πE (ρ) to E .
This generalizes the commutative case, where ρ is the conditional probability distribution of πE (ρ)
conditioned on its own support supp(ρ)

ρ = πE (ρ)( · |supp(ρ)) . (28)

Remark 30: In the commutative case the assertion (28) was proved for a local maximizer
ρ ∈ domE = S(A) ∩ (E + V ⊥) in Ref. 5. The articles6, 26, 27, 35 contain further characterizations of
local and global maximizers that can be interesting also in the non-commutative case.

The derivative of the logarithm is derived for A = Mat(N ,C) in Ref. 24. It may be generalized
to any *-subalgebra A of Mat(N ,C) using an algebra embedding φ : A → Mat(n,C) such that φ(1)
is invertible. If p ∈ A is a projection then for invertible ρ ∈ S(pAp) and self-adjoint u ∈ pAp we
have

D|ρ lnp(u) = ∫ ∞
0 (ρ + sp)−1u(ρ + sp)−1ds . (29)

Here we denote functions in pAp by a superscript like in the paragraph before Lemma 9.

Theorem 31: Suppose A is a *-subalgebra of Mat(N ,C) and E a Gibbsian family in A
with canonical tangent space V . Let ρ ∈ dom E , let p denote the support projection of ρ and put
θ := ln0 ◦πE (ρ) ∈ V . If u is a traceless self-adjoint matrix in pAp, then D|ρdE (u) = 〈u, lnp(ρ) − θ〉.
If ρ is a local maximizer of dE , then ρ = expp

1 (p θp) and dE (ρ) = F(θ ) − F p(p θp).

Proof: As discussed in the paragraph following (11), the mean value parametrization πE defined
for a ∈ E + V ⊥ by intersection a 
→ (a + V ⊥) ∩ E is real analytic. This gives a real analytic mapping

L : E + V ⊥ −→ V, a 
−→ ln0 ◦πE (a) .

We can use πE (a) = exp1 ◦L(a) and rewrite the entropy distance (13) of a state ρ ∈ E + V ⊥ from E
in the form

dE (ρ) = S(ρ, πE (ρ)) = S(ρ, exp1 ◦L(ρ)) (30)

= −S(ρ) − tr(ρ ln ◦ exp1 ◦L(ρ)) = −S(ρ) − tr(ρL(ρ)) + F ◦ L(ρ)

with the free energy F and von Neumann entropy S. As ρ is invertible in the algebra pAp, we can
differentiate at ρ the logarithm ln p in the direction of any self-adjoint matrix u ∈ pAp. By (29) and
cyclic reordering under the trace we get

D|ρ S(u) = −〈u, lnp(ρ)〉 − tr(u) .

Using the derivative of the free energy (23), which is for a, b ∈ A given by D|aF(b) = 〈b, exp1(a)〉,
the chain rule leads to

D|ρ(F ◦ L)(u) = D|L(ρ) F ◦ D|ρ L(u)

= 〈D|ρ L(u), exp1 ◦L(ρ)〉 = 〈D|ρ L(u), πE (ρ)〉 .

Since the image of L is V we have D|ρ L(u) ∈ V and thus by definition of the projection πE follows
〈D|ρ L(u), πE (ρ) − ρ〉 = 0. Differentiation of (30) in the direction of a traceless self-adjoint matrix
u ∈ pAp gives

D|ρdE (u) = 〈u, lnp(ρ)〉 + tr(u) − 〈u, L(ρ)〉 − 〈ρ, D|ρ L(u)〉
+〈D|ρ L(u), πE (ρ)〉 = 〈u, lnp(ρ) − L(ρ)〉 .

This completes the asserted directional derivative.
If ρ is a local maximizer of dE , then ln p(ρ) = p L(ρ)p + λp for some real λ because p spans

the orthogonal complement of the space of traceless self-adjoint matrices in pAp. If follows that
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ρ must be proportional to pexp (p L(ρ)p) as claimed. If we write θ := L(ρ) = ln0 ◦πE (ρ), then we
have ρ = expp

1 (p θp) and πE (ρ) = exp1(θ ). We get

dE (ρ) = S(ρ, πE (ρ)) = tr[ρ(lnp(ρ) − ln ◦πE (ρ))]

= tr
[
ρ(p θp − p ln ◦tr ◦ expp(p θp) − θ + 1 ln ◦tr ◦ exp(θ ))

]
= ln(tr(eθ )) − ln(tr(p ep θp)) .

�
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