30 research outputs found

    Differentially expressed profiles in the larval testes of Wolbachia infected and uninfected Drosophila

    Get PDF
    BACKGROUND: Wolbachia are endosymbiotic bacteria that are frequently found in arthropods and nematodes. These maternally inherited bacteria manipulate host reproduction by several mechanisms including cytoplasmic incompatibility (CI). CI is the most common phenotype induced by Wolbachia and results in the developmental arrest of embryos derived from crosses between Wolbachia-infected males and uninfected females. Although the molecular mechanisms of CI are currently unknown, several studies suggest that host sperm is modified by Wolbachia during spermatogenesis. RESULTS: We compared the gene expression of Drosophila melanogaster larval testes with and without the wMel strain of Wolbachia to identify candidate genes that could be involved in the interaction between Wolbachia and the insect host. Microarray, quantitative RT-PCR and in situ hybridization analyses were carried out on D. melanogaster larval testes to determine the effect of Wolbachia infection on host gene expression. A total of 296 genes were identified by microarray analysis to have at least a 1.5 fold change [q-value < 5%] in expression. When comparing Wolbachia-infected flies to uninfected flies, 167 genes were up-regulated and 129 genes down-regulated. Differential expression of genes related to metabolism, immunity, reproduction and other functions were observed. Quantitative RT-PCR (qRT-PCR) confirmed 12 genes are differentially expressed in the testes of the 3rd instar larvae of Wolbachia-infected and uninfected flies. In situ hybridization demonstrated that Wolbachia infection changes the expression of several genes putatively associated with spermatogenesis including JH induced protein-26 and Mst84Db, or involved in immune (kenny) or metabolism (CG4988-RA). CONCLUSIONS: Wolbachia change the gene expression of 296 genes in the larval testes of D. melanogaster including genes related to metabolism, immunity and reproduction. Interestingly, most of the genes putatively involved in immunity were up-regulated in the presence of Wolbachia. In contrast, most of the genes putatively associated with reproduction (especially spermatogenesis) were down-regulated in the presence of Wolbachia. These results suggest Wolbachia may activate the immune pathway but inhibit spermatogenesis. Our data provide a significant panel of candidate genes that may be involved in the interaction between Wolbachia and their insect hosts. This forms a basis to help elucidate the underlying mechanisms of Wolbachia-induced CI in Drosophila and the influence of Wolbachia on spermatogenesis

    Expansion and functional diversification of a leucyl aminopeptidase family that encodes the major protein constituents of Drosophila sperm

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The evolutionary diversification of gene families through gene creation (and loss) is a dynamic process believed to be critical to the evolution of functional novelty. Previous identification of a closely related family of eight annotated metalloprotease genes of the M17 Merops family in the <it>Drosophila </it>sperm proteome (termed, Sperm-LeucylAminoPeptidases, S-LAPs 1-8) led us to hypothesize that this gene family may have experienced such a diversification during insect evolution.</p> <p>Results</p> <p>To assess putative functional activities of S-LAPs, we (i) demonstrated that all S-LAPs are specifically expressed in the testis, (ii) confirmed their presence in sperm by two-dimensional gel electrophoresis and mass spectrometry, (iii) determined that they represent a major portion of the total protein in sperm and (iv) identified aminopeptidase enzymatic activity in sperm extracts using LAP-specific substrates. Functionally significant divergence at the canonical M17 active site indicates that the largest phylogenetic group of S-LAPs lost catalytic activity and likely acquired novel, as yet undetermined, functions in sperm prior to the expansion of the gene family.</p> <p>Conclusions</p> <p>Comparative genomic and phylogenetic analyses revealed the dramatic expansion of the S-LAP gene family during <it>Drosophila </it>evolution and copy number heterogeneity in the genomes of related insects. This finding, in conjunction with the loss of catalytic activity and potential neofunctionalization amongst some family members, extends empirical support for pervasive "revolving door" turnover in the evolution of reproductive gene family composition and function.</p

    Contrasting patterns of evolutionary constraint and novelty revealed by comparative sperm proteomic analysis in Lepidoptera

    Get PDF
    Background: Rapid evolution is a hallmark of reproductive genetic systems and arises through the combined processes of sequence divergence, gene gain and loss, and changes in gene and protein expression. While studies aiming to disentangle the molecular ramifications of these processes are progressing, we still know little about the genetic basis of evolutionary transitions in reproductive systems. Here we conduct the first comparative analysis of sperm proteomes in Lepidoptera, a group that exhibits dichotomous spermatogenesis, in which males produce a functional fertilization-competent sperm (eupyrene) and an incompetent sperm morph lacking nuclear DNA (apyrene). Through the integrated application of evolutionary proteomics and genomics, we characterize the genomic patterns potentially associated with the origination and evolution of this unique spermatogenic process and assess the importance of genetic novelty in Lepidopteran sperm biology. Results: Comparison of the newly characterized Monarch butterfly (Danaus plexippus) sperm proteome to those of the Carolina sphinx moth (Manduca sexta) and the fruit fly (Drosophila melanogaster) demonstrated conservation at the level of protein abundance and post-translational modification within Lepidoptera. In contrast, comparative genomic analyses across insects reveals significant divergence at two levels that differentiate the genetic architecture of sperm in Lepidoptera from other insects. First, a significant reduction in orthology among Monarch sperm genes relative to the remainder of the genome in non-Lepidopteran insect species was observed. Second, a substantial number of sperm proteins were found to be specific to Lepidoptera, in that they lack detectable homology to the genomes of more distantly related insects. Lastly, the functional importance of Lepidoptera specific sperm proteins is broadly supported by their increased abundance relative to proteins conserved across insects. Conclusions: Our results identify a burst of genetic novelty amongst sperm proteins that may be associated with the origin of heteromorphic spermatogenesis in ancestral Lepidoptera and/or the subsequent evolution of this system. This pattern of genomic diversification is distinct from the remainder of the genome and thus suggests that this transition has had a marked impact on lepidopteran genome evolution. The identification of abundant sperm proteins unique to Lepidoptera, including proteins distinct between specific lineages, will accelerate future functional studies aiming to understand the developmental origin of dichotomous spermatogenesis and the functional diversification of the fertilization incompetent apyrene sperm morph

    Structure of flocs of latex particles formed by addition of protein from Moringa seeds

    Get PDF
    Proteins extracted from the seeds of Moringa trees are effective flocculents for particles dispersed in water and are attractive as a natural and sustainable product for use in water purification. Studies with a model system consisting of polystyrene latex particles have shown that the protein adsorbs to the surface and causes flocculation as unusually dense aggregates. Small-angle neutron scattering that exploits contrast matching of deuterated latex particles dispersed in D2O to highlight bound protein has shown that the adsorbed amount reaches about 3 mg m(-2). The particles form very compact flocs that are characterized by fractal dimensions that approach the theoretical maximum of 3. Ultra small-angle neutron scattering allows these flocs to be characterized for a range of particle and protein concentrations. Proteins from two species of Moringa trees were investigated. The protein from Moringa stenopetala seeds gave rise to slightly lower fractal dimensions compared to Moringa oleifera, but still much larger than values observed for conventional ionic or polymeric flocculents that are in the range 1.75-2.3. Compact flocs are desirable for efficient separation of impurities and dewatering of sludge as well as other applications. A trend of increasing fractal dimension with particle concentration was observed when M. stenopetala seed protein was used and this resembles the behaviour predicted in Brownian dynamics simulation of flocculation

    Structure of flocs of latex particles formed by addition of protein from Moringa seeds

    No full text
    Proteins extracted from the seeds of Moringa trees are effective flocculents for particles dispersed in water and are attractive as a natural and sustainable product for use in water purification. Studies with a model system consisting of polystyrene latex particles have shown that the protein adsorbs to the surface and causes flocculation as unusually dense aggregates. Small-angle neutron scattering that exploits contrast matching of deuterated latex particles dispersed in D2O to highlight bound protein has shown that the adsorbed amount reaches about 3 mg m(-2). The particles form very compact flocs that are characterized by fractal dimensions that approach the theoretical maximum of 3. Ultra small-angle neutron scattering allows these flocs to be characterized for a range of particle and protein concentrations. Proteins from two species of Moringa trees were investigated. The protein from Moringa stenopetala seeds gave rise to slightly lower fractal dimensions compared to Moringa oleifera, but still much larger than values observed for conventional ionic or polymeric flocculents that are in the range 1.75-2.3. Compact flocs are desirable for efficient separation of impurities and dewatering of sludge as well as other applications. A trend of increasing fractal dimension with particle concentration was observed when M. stenopetala seed protein was used and this resembles the behaviour predicted in Brownian dynamics simulation of flocculation
    corecore