21 research outputs found

    Drug susceptibility and biofilm formation of Burkholderia pseudomallei in nutrient-limited condition

    Get PDF
    Abstract. Burkholderia pseudomallei is the causative agent of melioidosis, which can form biofilms and microcolonies in vivo and in vitro. One of the hallmark characteristics of the biofilm-forming bacteria is that they can be up to 1,000 times more resistant to antibiotics than their free-living counterpart. Bacteria also become highly tolerant to antibiotics when nutrients are limited. One of the most important causes of starvation induced tolerance in vivo is biofilm growth. However, the effect of nutritional stress on biofilm formation and drug tolerance of B. pseudomallei has never been reported. Therefore, this study aims to determine the effect of nutrient-limited and enriched conditions on drug susceptibility of B. pseudomallei in both planktonic and biofilm forms in vitro using broth microdilution method and Calgary biofilm device, respectively. The biofilm formation of B. pseudomallei in nutrient-limited and enriched conditions was also evaluated by a modified microtiter-plate test. Six isolates of ceftazidime (CAZ)-susceptible and four isolates of CAZ-resistant B. pseudomallei were used. The results showed that the minimum bactericidal concentrations of CAZ against B. pseudomallei in nutrient-limited condition were higher than those in enriched condition. The drug susceptibilities of B. pseudomallei biofilm in both enriched and nutrient-limited conditions were more tolerant than those of planktonic cells. Moreover, the quantification of biofilm formation by B. pseudomallei in nutrient-limited condition was significantly higher than that in enriched condition. These data indicate that nutrient-limited condition could induce biofilm formation and drug tolerance of B. pseudomallei

    Co-evolutionary Signals Identify Burkholderia pseudomallei Survival Strategies in a Hostile Environment

    Get PDF
    The soil bacterium Burkholderia pseudomallei is the causative agent of melioidosis and a significant cause of human morbidity and mortality in many tropical and subtropical countries. The species notoriously survives harsh environmental conditions but the genetic architecture for these adaptations remains unclear. Here we employed a powerful combination of genome-wide epistasis and co-selection studies (2,011 genomes), condition-wide transcriptome analyses (82 diverse conditions), and a gene knockout assay to uncover signals of "co-selection"-that is a combination of genetic markers that have been repeatedly selected together through B. pseudomallei evolution. These enabled us to identify 13,061 mutation pairs under co-selection in distinct genes and noncoding RNA. Genes under co-selection displayed marked expression correlation when B. pseudomallei was subjected to physical stress conditions, highlighting the conditions as one of the major evolutionary driving forces for this bacterium. We identified a putative adhesin (BPSL1661) as a hub of co-selection signals, experimentally confirmed a BPSL1661 role under nutrient deprivation, and explored the functional basis of co-selection gene network surrounding BPSL1661 in facilitating the bacterial survival under nutrient depletion. Our findings suggest that nutrient-limited conditions have been the common selection pressure acting on this species, and allelic variation of BPSL1661 may have promoted B. pseudomallei survival during harsh environmental conditions by facilitating bacterial adherence to different surfaces, cells, or living hosts.Peer reviewe

    Genomic Islands as a Marker to Differentiate between Clinical and Environmental Burkholderia pseudomallei

    Get PDF
    Burkholderia pseudomallei, as a saprophytic bacterium that can cause a severe sepsis disease named melioidosis, has preserved several extra genes in its genome for survival. The sequenced genome of the organism showed high diversity contributed mainly from genomic islands (GIs). Comparative genome hybridization (CGH) of 3 clinical and 2 environmental isolates, using whole genome microarrays based on B. pseudomallei K96243 genes, revealed a difference in the presence of genomic islands between clinical and environmental isolates. The largest GI, GI8, of B. pseudomallei was observed as a 2 sub-GI named GIs8.1 and 8.2 with distinguishable %GC content and unequal presence in the genome. GIs8.1, 8.2 and 15 were found to be more common in clinical isolates. A new GI, GI16c, was detected on chromosome 2. Presences of GIs8.1, 8.2, 15 and 16c were evaluated in 70 environmental and 64 clinical isolates using PCR assays. A combination of GIs8.1 and 16c (positivity of either GI) was detected in 70% of clinical isolates and 11.4% of environmental isolates (P<0.001). Using BALB/c mice model, no significant difference of time to mortality was observed between K96243 isolate and three isolates without GIs under evaluation (P>0.05). Some virulence genes located in the absent GIs and the difference of GIs seems to contribute less to bacterial virulence. The PCR detection of 2 GIs could be used as a cost effective and rapid tool to detect potentially virulent isolates that were contaminated in soil

    Melioidosis in Thailand: present and future

    No full text
    A recent modelling study estimated that there are 2800 deaths due to melioidosis in Thailand yearly. The Thailand Melioidosis Network (formed in 2012) has been working closely with the Ministry of Public Health (MoPH) to investigate and reduce the burden of this disease. Based on updated data, the incidence of melioidosis is still high in Northeast Thailand. More than 2000 culture-confirmed cases of melioidosis are diagnosed in general hospitals with microbiology laboratories in this region each year. The mortality rate is around 35%. Melioidosis is endemic throughout Thailand, but it is still not uncommon that microbiological facilities misidentify Burkholderia pseudomallei as a contaminant or another organism. Disease awareness is low, and people in rural areas neither wear boots nor boil water before drinking to protect themselves from acquiring B. pseudomallei. Previously, about 10 melioidosis deaths were formally reported to the National Notifiable Disease Surveillance System (Report 506) each year, thus limiting priority setting by the MoPH. In 2015, the formally reported number of melioidosis deaths rose to 112, solely because Sunpasithiprasong Hospital, Ubon Ratchathani province, reported its own data (n = 107). Melioidosis is truly an important cause of death in Thailand, and currently reported cases (Report 506) and cases diagnosed at research centers reflect the tip of the iceberg. Laboratory training and communication between clinicians and laboratory personnel are required to improve diagnosis and treatment of melioidosis countrywide. Implementation of rapid diagnostic tests, such as a lateral flow antigen detection assay, with high accuracy even in melioidosis-endemic countries such as Thailand, is critically needed. Reporting of all culture-confirmed melioidosis cases from every hospital with a microbiology laboratory, together with final outcome data, is mandated under the Communicable Diseases Act B.E.2558. By enforcing this legislation, the MoPH could raise the priority of this disease, and should consider implementing a campaign to raise awareness and melioidosis prevention countrywide

    Melioidosis in Thailand: present and future

    No full text
    A recent modelling study estimated that there are 2800 deaths due to melioidosis in Thailand yearly. The Thailand Melioidosis Network (formed in 2012) has been working closely with the Ministry of Public Health (MoPH) to investigate and reduce the burden of this disease. Based on updated data, the incidence of melioidosis is still high in Northeast Thailand. More than 2000 culture-confirmed cases of melioidosis are diagnosed in general hospitals with microbiology laboratories in this region each year. The mortality rate is around 35%. Melioidosis is endemic throughout Thailand, but it is still not uncommon that microbiological facilities misidentify Burkholderia pseudomallei as a contaminant or another organism. Disease awareness is low, and people in rural areas neither wear boots nor boil water before drinking to protect themselves from acquiring B. pseudomallei. Previously, about 10 melioidosis deaths were formally reported to the National Notifiable Disease Surveillance System (Report 506) each year, thus limiting priority setting by the MoPH. In 2015, the formally reported number of melioidosis deaths rose to 112, solely because Sunpasithiprasong Hospital, Ubon Ratchathani province, reported its own data (n = 107). Melioidosis is truly an important cause of death in Thailand, and currently reported cases (Report 506) and cases diagnosed at research centers reflect the tip of the iceberg. Laboratory training and communication between clinicians and laboratory personnel are required to improve diagnosis and treatment of melioidosis countrywide. Implementation of rapid diagnostic tests, such as a lateral flow antigen detection assay, with high accuracy even in melioidosis-endemic countries such as Thailand, is critically needed. Reporting of all culture-confirmed melioidosis cases from every hospital with a microbiology laboratory, together with final outcome data, is mandated under the Communicable Diseases Act B.E.2558. By enforcing this legislation, the MoPH could raise the priority of this disease, and should consider implementing a campaign to raise awareness and melioidosis prevention countrywide
    corecore