1,921 research outputs found

    Ultraviolet Absorption and Luminescence Investigations

    Get PDF
    Ultraviolet photographic system for remote detection of luminescent minerals and rocks and discriminating among nonluminescent materials on basis of ultraviolet absorptio

    Continuum description of finite-size particles advected by external flows. The effect of collisions

    Get PDF
    The equation of the density field of an assembly of macroscopic particles advected by a hydrodynamic flow is derived from the microscopic description of the system. This equation allows to recognize the role and the relative importance of the different microscopic processes implicit in the model: the driving of the external flow, the inertia of the particles, and the collisions among them. The validity of the density description is confirmed by comparisons of numerical studies of the continuum equation with Direct Simulation Monte Carlo (DSMC) simulations of hard disks advected by a chaotic flow. We show that the collisions have two competing roles: a dispersing-like effect and a clustering effect (even for elastic collisions). An unexpected feature is also observed in the system: the presence of collisions can reverse the effect of inertia, so that grains with lower inertia are more clusterized.Comment: Final (strongly modified) version accepted in PRE; 6 pages, 3 figure

    A recurrent neural network with ever changing synapses

    Full text link
    A recurrent neural network with noisy input is studied analytically, on the basis of a Discrete Time Master Equation. The latter is derived from a biologically realizable learning rule for the weights of the connections. In a numerical study it is found that the fixed points of the dynamics of the net are time dependent, implying that the representation in the brain of a fixed piece of information (e.g., a word to be recognized) is not fixed in time.Comment: 17 pages, LaTeX, 4 figure

    Phase separation in mixtures of colloids and long ideal polymer coils

    Full text link
    Colloidal suspensions with free polymer coils which are larger than the colloidal particles are considered. The polymer-colloid interaction is modeled by an extension of the Asakura-Oosawa model. Phase separation occurs into dilute and dense fluid phases of colloidal particles when polymer is added. The critical density of this transition tends to zero as the size of the polymer coils diverges.Comment: 5 pages, 3 figure

    Concept for a Large Scalable Space Telescope: In-Space Assembly

    Get PDF
    We present a conceptual design for a scalable (10-50 meter segmented filled-aperture) space observatory operating at UV-optical-near infrared wavelengths. This telescope is designed for assembly in space by robots, astronauts or a combination of the two, as envisioned in NASA s Vision for Space Exploration. Our operations concept for this-space telescope provides for assembly and check-out in an Earth Moon L2 (EML2) orbit, and transport to a Sun-Earth L2 (SEL2) orbit for science operations and routine servicing, with return to EML2 for major servicing. We have developed and analyzed initial designs for the optical, structural, thermal and attitude control systems for a 30-m aperture space telescope. We further describe how the separate components are packaged for launch by heavy lift vehicle(s) and the approach for the robot assembly of the telescope from these components

    Derivation of Hebb's rule

    Full text link
    On the basis of the general form for the energy needed to adapt the connection strengths of a network in which learning takes place, a local learning rule is found for the changes of the weights. This biologically realizable learning rule turns out to comply with Hebb's neuro-physiological postulate, but is not of the form of any of the learning rules proposed in the literature. It is shown that, if a finite set of the same patterns is presented over and over again to the network, the weights of the synapses converge to finite values. Furthermore, it is proved that the final values found in this biologically realizable limit are the same as those found via a mathematical approach to the problem of finding the weights of a partially connected neural network that can store a collection of patterns. The mathematical solution is obtained via a modified version of the so-called method of the pseudo-inverse, and has the inverse of a reduced correlation matrix, rather than the usual correlation matrix, as its basic ingredient. Thus, a biological network might realize the final results of the mathematician by the energetically economic rule for the adaption of the synapses found in this article.Comment: 29 pages, LaTeX, 3 figure

    Parity forbidden excitations of Sr2CuO2Cl2 revealed by optical third-harmonic spectroscopy

    Full text link
    We present the first study of nonlinear optical third harmonic generation in the strongly correlated charge-transfer insulator Sr2CuO2Cl2. For fundamental excitation in the near-infrared, the THG spectrum reveals a strongly resonant response for photon energies near 0.7 eV. Polarization analysis reveals this novel resonance to be only partially accounted for by three-photon excitation to the optical charge-transfer exciton, and indicates that an even-parity excitation at 2 eV, with a_1g symmetry, participates in the third harmonic susceptibility.Comment: Requires RevTeX v4.0beta

    Stream Microbial Communities Show Resistance to Pharmaceutical Exposure

    Get PDF
    Residues of pharmaceuticals are increasingly detected in surface waters throughout the world. In four streams in Baltimore, Maryland, USA, we detected analgesics, stimulants, antihistamines, and antibiotics using passive organic samplers. We exposed biofilm communities in these streams to the common drugs caffeine, cimetidine, ciprofloxacin, and diphenhydramine. Respiration rates in the least urban stream were suppressed when exposed to these drugs, but biofilm functioning in the most urban stream was resistant to drug exposure. Exposure to the antibiotic ciprofloxacin altered bacterial community composition at all sites, with the greatest change occurring in the most urban stream. These results indicated that continuous exposure to drugs in urban streams may select for sub‐populations of highly resistant bacteria that maintain community function in response to urban contaminants

    Urban stream microbial communities show resistance to pharmaceutical exposure

    Get PDF
    Residues of pharmaceuticals are increasingly detected in surface waters throughout the world. In four streams in Baltimore, Maryland, USA, we detected analgesics, stimulants, antihistamines, and antibiotics using passive organic samplers. We exposed biofilm communities in these streams to the common drugs caffeine, cimetidine, ciprofloxacin, and diphenhydramine. Respiration rates in the least urban stream were suppressed when exposed to these drugs, but biofilm functioning in the most urban stream was resistant to drug exposure. Exposure to the antibiotic ciprofloxacin altered bacterial community composition at all sites, with the greatest change occurring in the most urban stream. These results indicated that continuous exposure to drugs in urban streams may select for sub-populations of highly resistant bacteria that maintain community function in response to urban contaminants

    Mode-coupling theory for multiple-time correlation functions of tagged particle densities and dynamical filters designed for glassy systems

    Full text link
    The theoretical framework for higher-order correlation functions involving multiple times and multiple points in a classical, many-body system developed by Van Zon and Schofield [Phys. Rev. E 65, 011106 (2002)] is extended here to include tagged particle densities. Such densities have found an intriguing application as proposed measures of dynamical heterogeneities in structural glasses. The theoretical formalism is based upon projection operator techniques which are used to isolate the slow time evolution of dynamical variables by expanding the slowly-evolving component of arbitrary variables in an infinite basis composed of the products of slow variables of the system. The resulting formally exact mode-coupling expressions for multiple-point and multiple-time correlation functions are made tractable by applying the so-called N-ordering method. This theory is used to derive for moderate densities the leading mode coupling expressions for indicators of relaxation type and domain relaxation, which use dynamical filters that lead to multiple-time correlations of a tagged particle density. The mode coupling expressions for higher order correlation functions are also succesfully tested against simulations of a hard sphere fluid at relatively low density.Comment: 15 pages, 2 figure
    corecore