105 research outputs found
Raman imaging and electronic properties of graphene
Graphite is a well-studied material with known electronic and optical
properties. Graphene, on the other hand, which is just one layer of carbon
atoms arranged in a hexagonal lattice, has been studied theoretically for quite
some time but has only recently become accessible for experiments. Here we
demonstrate how single- and multi-layer graphene can be unambiguously
identified using Raman scattering. Furthermore, we use a scanning Raman set-up
to image few-layer graphene flakes of various heights. In transport experiments
we measure weak localization and conductance fluctuations in a graphene flake
of about 7 monolayer thickness. We obtain a phase-coherence length of about 2
m at a temperature of 2 K. Furthermore we investigate the conductivity
through single-layer graphene flakes and the tuning of electron and hole
densities via a back gate
Raman Topography and Strain Uniformity of Large-Area Epitaxial Graphene
We report results from two-dimensional Raman spectroscopy studies of
large-area epitaxial graphene grown on SiC. Our work reveals unexpectedly large
variation in Raman peak position across the sample resulting from inhomogeneity
in the strain of the graphene film, which we show to be correlated with
physical topography by coupling Raman spectroscopy with atomic force
microscopy. We report that essentially strain free graphene is possible even
for epitaxial graphene.Comment: 10 pages, 3 figure
Quantifying defects in graphene via Raman spectroscopy at different excitation energies.
We present a Raman study of Ar(+)-bombarded graphene samples with increasing ion doses. This allows us to have a controlled, increasing, amount of defects. We find that the ratio between the D and G peak intensities, for a given defect density, strongly depends on the laser excitation energy. We quantify this effect and present a simple equation for the determination of the point defect density in graphene via Raman spectroscopy for any visible excitation energy. We note that, for all excitations, the D to G intensity ratio reaches a maximum for an interdefect distance ∼3 nm. Thus, a given ratio could correspond to two different defect densities, above or below the maximum. The analysis of the G peak width and its dispersion with excitation energy solves this ambiguity
seasonal abundance of the nearctic gall midge obolodiplosis robiniae in italy and the impact of its antagonist platygaster robiniae on pest populations
The Nearctic gall midge Obolodiplosis robiniae (Haldeman, 1847) (Diptera Cecidomyiidae) infesting black locusts, Robinia pseudoacacia L. (Fabaceae), was detected in Asia in 2002 and in Europe (first in Italy) in 2003. Its distribution in Europe has expanded dramatically, probably favored by extensive distribution of its host plant along the main routes. The results of a 3-yr study on the seasonal abundance of O. robiniae in northern Italy are reported here. O. robiniae can develop three to four generations per year by exploiting plants of different ages and vigor. Overwintering takes place as diapausing larvae and adults emerge in spring. Two generations are completed on mature plants where populations decline in summer. Two additional generations can develop on root suckers from midsummer onward. Pest population densities reach their highest levels in late spring. Gall midge larvae were attacked by various predators, but parasitism by the platygastrid Platygaster robiniae Buhl & Duso was particularly significant. The impact of parasitism by P. robiniae is indicated as a key factor in reducing O. robiniae population densities
Microsatellite and Mitochondrial Data Provide Evidence for a Single Major Introduction for the Neartic Leafhopper Scaphoideus titanus in Europe
Scaphoideus titanus, a leafhopper native to North America and invasive in Europe, is the vector of the Flavescence dorée phytoplasma, the causal agent of the most important form of grapevine yellows in European vineyards. We studied 10 polymorphic microsatellite loci and a 623 bp fragment of the mitochondrial cytochrome oxidase II gene in native S. titanus from north-eastern America and introduced European populations, to elucidate the colonization scenario. Consistent with their recent history, invasive European populations were less genetically diverse than American populations for both types of markers, suggesting a recent bottleneck. Significant isolation by distance was detected between American populations but not between European populations. None of the European mitochondrial haplotypes was found in the American vineyards, from which they are assumed to have originated. The precise source of the invasive S. titanus populations therefore remains unclear. Nevertheless, the high heterozygosity of North-East American populations (which contained 92% of the observed alleles) suggests that this region is part of the native range of S. titanus. Clustering population genetics analyses with microsatellite and mitochondrial data suggested that European populations originated from a single introduction event. Most of the introduced populations clustered with populations from Long Island, the Atlantic Coast winegrowing region in which Vitis aestivalis occurs
Raman spectroscopy as a versatile tool for studying the properties of graphene.
Raman spectroscopy is an integral part of graphene research. It is used to determine the number and orientation of layers, the quality and types of edge, and the effects of perturbations, such as electric and magnetic fields, strain, doping, disorder and functional groups. This, in turn, provides insight into all sp(2)-bonded carbon allotropes, because graphene is their fundamental building block. Here we review the state of the art, future directions and open questions in Raman spectroscopy of graphene. We describe essential physical processes whose importance has only recently been recognized, such as the various types of resonance at play, and the role of quantum interference. We update all basic concepts and notations, and propose a terminology that is able to describe any result in literature. We finally highlight the potential of Raman spectroscopy for layered materials other than graphene
Deep inspiration breath-hold intensity modulated radiation therapy in a large clinical series of 239 leftsided breast cancer patients: A dosimetric analysis of organs at risk doses and clinical feasibility from a single center experience
To evaluate dose to organs at risk, target coverage and treatment compliance in left-sided breast cancer patients (LSBCP) treated with deep inspiration breath-hold (DIBH) and intensity modulated radiation therapy (IMRT) technique in a contest of daily clinical practice
- …