901 research outputs found

    An unsupervised learning approach to ultrasound strain elastography with spatio-temporal consistency

    Get PDF
    Quasi-static ultrasound elastography (USE) is an imaging modality that measures deformation (i.e. strain) of tissue in response to an applied mechanical force. In USE, the strain modulus is traditionally obtained by deriving the displacement field estimated between a pair of radio-frequency data. In this work we propose a recurrent network architecture with convolutional long-short-term memory decoder blocks to improve displacement estimation and spatio-temporal continuity between time series ultrasound frames. The network is trained in an unsupervised way, by optimising a similarity metric between the reference and compressed image. Our training loss is also composed of a regularisation term that preserves displacement continuity by directly optimising the strain smoothness, and a temporal continuity term that enforces consistency between successive strain predictions. In addition, we propose an open-access in vivo database for quasi-static USE, which consists of radio-frequency data sequences captured on the arm of a human volunteer. Our results from numerical simulation and in vivo data suggest that our recurrent neural network can account for larger deformations, as compared with two other feed-forward neural networks. In all experiments, our recurrent network outperformed the state-of-the-art for both learning-based and optimisationbased methods, in terms of elastographic signal-to-noise ratio, strain consistency, and image similarity. Finally, our open-source code provides a 3D-slicer visualisation module that can be used to process ultrasound RF frames in real-time, at a rate of up to 20 frames per second, using a standard GPU

    An Unsupervised Approach to Ultrasound Elastography with End-to-end Strain Regularisation

    Get PDF
    Quasi-static ultrasound elastography (USE) is an imaging modality that consists of determining a measure of deformation (i.e. strain) of soft tissue in response to an applied mechanical force. The strain is generally determined by estimating the displacement between successive ultrasound frames acquired before and after applying manual compression. The computational efficiency and accuracy of the displacement prediction, also known as time-delay estimation, are key challenges for real-time USE applications. In this paper, we present a novel deep-learning method for efficient time-delay estimation between ultrasound radio-frequency (RF) data. The proposed method consists of a convolutional neural network (CNN) that predicts a displacement field between a pair of pre- and post-compression ultrasound RF frames. The network is trained in an unsupervised way, by optimizing a similarity metric between the reference and compressed image. We also introduce a new regularization term that preserves displacement continuity by directly optimizing the strain smoothness. We validated the performance of our method by using both ultrasound simulation and in vivo data on healthy volunteers. We also compared the performance of our method with a state-of-the-art method called OVERWIND [17]. Average contrast-to-noise ratio (CNR) and signal-to-noise ratio (SNR) of our method in 30 simulation and 3 in vivo image pairs are 7.70 and 6.95, 7 and 0.31, respectively. Our results suggest that our approach can effectively predict accurate strain images. The unsupervised aspect of our approach represents a great potential for the use of deep learning application for the analysis of clinical ultrasound data

    An unsupervised learning-based shear wave tracking method for ultrasound elastography

    Get PDF
    Shear wave elastography involves applying a non-invasive acoustic radiation force to the tissue and imaging the induced deformation to infer its mechanical properties. This work investigates the use of convolutional neural networks to improve displacement estimation accuracy in shear wave imaging. Our training approach is completely unsupervised, which allows to learn the estimation of the induced micro-scale deformations without ground truth labels. We also present an ultrasound simulation dataset where the shear wave propagation has been simulated via finite element method. Our dataset is made publicly available along with this paper, and consists in 150 shear wave propagation simulations in both homogenous and hetegeneous media, which represents a total of 20,000 ultrasound images. We assessed the ability of our learning-based approach to characterise tissue elastic properties (i.e., Young's modulus) on our dataset and compared our results with a classical normalised cross-correlation approach

    Renormalization aspects of N=1 Super Yang-Mills theory in the Wess-Zumino gauge

    Get PDF
    The renormalization of N=1 Super Yang-Mills theory is analysed in the Wess-Zumino gauge, employing the Landau condition. An all orders proof of the renormalizability of the theory is given by means of the Algebraic Renormalization procedure. Only three renormalization constants are needed, which can be identified with the coupling constant, gauge field and gluino renormalization. The non-renormalization theorem of the gluon-ghost-antighost vertex in the Landau gauge is shown to remain valid in N=1 Super Yang-Mills. Moreover, due to the non-linear realization of the supersymmetry in the Wess-Zumino gauge, the renormalization factor of the gauge field turns out to be different from that of the gluino. These features are explicitly checked through a three loop calculation.Comment: 15 pages, minor text improvements, references added. Version accepted for publication in the EPJ

    Implementing the Gribov-Zwanziger framework in N=1 Super Yang-Mills in the Landau gauge

    Get PDF
    The Gribov-Zwanziger framework accounting for the existence of Gribov copies is extended to N=1 Super Yang--Mills theories quantized in the Landau gauge. We show that the restriction of the domain of integration in the Euclidean functional integral to the first Gribov horizon can be implemented in a way to recover non-perturbative features of N=1 Super Yang--Mills theories, namely: the existence of the gluino condensate as well as the vanishing of the vacuum energy.Comment: 19 pages, no figure

    Assessment of Abilities of White-Tailed Deer to Jump Fences

    Get PDF
    There is a need for insight into fence heights required for impeding white-tailed deer (Odocoileus virginianus). We evaluated the ability of wild-caught deer to jump progressively taller fences and documented deterrence rates of 0% for fences ≤1.5 m followed by increasing deterrence rates of 14% at 1.8 m, 85% at 2.1 m, and 100% at 2.4 m. We documented 100% deterrence rates during 5 additional experiments with different deer and the test fence at 2.4 m, a common height of fences at captive deer facilities. Our results will be valuable to those managing spread of wildlife diseases, deer–vehicle collisions, and agricultural damage

    Training Deer to Avoid Sites Through Negative Reinforcement

    Get PDF
    Deer frequently visit areas where they may cause damage. Incidents along roadways and runways inflict numerous injuries to animals and humans, and cause considerable economic losses. Concerns are increasing that deer interactions with domestic animals may contribute to spread of disease. Deer foraging in residential areas, agricultural fields, or plant propagation sites can impede growth and possibly survival of desirable plants. We conducted a series of trials to determine whether mild electric shock would induce place avoidance in deer. Shock was delivered through a device attached to a collar. A noise cue was emitted as an animal approached a defined area if the animal failed to retreat a shock followed. Deer learned to avoid areas associated with shock. We concluded that place avoidance induced through negative reinforcement may be a feasible means to protect valuable resources from resident animals. However, the technological limitations of tested devices, costs to implement, and required training for individual deer reduced the practicality of this approach for highly mobile animals and as a means to protect resources with low economic significance

    Developing 'Skull Base Navigation' Software for Facial Nerve Surgery

    Get PDF
    • …
    corecore