26 research outputs found

    TbUNC119 and Its Binding Protein Complex Are Essential for Propagation, Motility, and Morphogenesis of Trypanosoma brucei Procyclic Form Cells

    Get PDF
    Flagellum-mediated motility of Trypanosoma brucei is considered to be essential for the parasite to complete stage development in the tsetse fly vector, while the mechanism by which flagellum-mediated motility is controlled are not fully understood. We thus compared T. brucei whole gene products (amino acid sequence) with Caenorhabditis elegans UNC (uncoordinated) proteins, in order to find uncharacterized motility-related T. brucei genes. Through in silico analysis, we found 88 gene products which were highly similar to C. elegans UNC proteins and categorized them as TbCEUN (T. brucei gene products which have high similarity to C. elegans UNC proteins). Approximately two thirds of the 88 TbCEUN gene products were kinesin-related molecules. A gene product highly similar to C. elegans UNC119 protein was designated as TbUNC119. RNAi-mediated depletion of TbUNC119 showed no apparent phenotype. However, knock-down analysis of both TbUNC119 and its binding protein (TbUNC119BP) which was found by yeast two-hybrid analysis showed characteristic phenotypes, including reduced motility, morphological change (extended cell shape), and cellular apoptosis. Based on the observed phenotypes, possible function of the TbUNC119 and TbUNC119BP is discussed

    Germination of Individual Bacillus subtilis Spores with Alterations in the GerD and SpoVA Proteins, Which Are Important in Spore Germinationâ–¿

    No full text
    Release of Ca2+ with dipicolinic acid (CaDPA) was monitored by Raman spectroscopy and differential interference contrast microscopy during germination of individual spores of Bacillus subtilis strains with alterations in GerD and SpoVA proteins. Notable conclusions about germination after the addition of nutrient were as follows. (i) Following l-alanine addition, wild-type and gerD spores and spores with elevated SpoVA protein levels (↑SpoVA spores) slowly released ∼10% of their CaDPA during a variable (6- to 55-min) period ending at Tlag, the time when faster CaDPA release began. (ii) Tlag times were lower for ↑SpoVA spores than for wild-type spores and were higher for gerD spores. (iii) The long Tlag times of gerD spores were partially due to slow commitment to germinate. (iv) The intervals between the commitment to germinate and CaDPA release were similar for wild-type and ↑SpoVA spores but longer for gerD spores. (v) The times for rapid CaDPA release, ΔTrelease = Trelease − Tlag (with Trelease being the time at which CaDPA release was complete), were similar for wild-type, gerD, and ↑SpoVA spores. (vi) Spores with either one of two point mutations in the spoVA operon (spoVA1 and spoVA2 spores) exhibited a more rapid rate of CaDPA release beginning immediately after l-alanine addition leading to ∼65% CaDPA release prior to Tlag. (vii) Tlag times for spoVA1 and spoVA2 spores were longer than for wild-type spores. (viii) The intervals between spoVA1 and spoVA2 spores' commitment and CaDPA release were similar to those for wild-type spores, but commitment occurred later. In contrast to germination after the addition of nutrient, Tlag and ΔTrelease times were relatively similar during dodecylamine germination of spores of the five strains. These findings suggest the following. (i) GerD plays no role in CaDPA release during spore germination. (ii) SpoVA proteins are involved in CaDPA release during germination with nutrients, and probably with dodecylamine. (iii) Spores release significant CaDPA before commitment. (iv) CaDPA release during Tlag and ΔTrelease may signal subsequent germination events

    Role of Dipicolinic Acid in the Germination, Stability, and Viability of Spores of Bacillus subtilisâ–¿

    Get PDF
    Spores of Bacillus subtilis spoVF strains that cannot synthesize dipicolinic acid (DPA) but take it up during sporulation were prepared in medium with various DPA concentrations, and the germination and viability of these spores as well as the DPA content in individual spores were measured. Levels of some other small molecules in DPA-less spores were also measured. These studies have allowed the following conclusions. (i) Spores with no DPA or low DPA levels that lack either the cortex-lytic enzyme (CLE) SleB or the receptors that respond to nutrient germinants could be isolated but were unstable and spontaneously initiated early steps in spore germination. (ii) Spores that lacked SleB and nutrient germinant receptors and also had low DPA levels were more stable. (iii) Spontaneous germination of spores with no DPA or low DPA levels was at least in part via activation of SleB. (iv) The other redundant CLE, CwlJ, was activated only by the release of high levels of DPA from spores. (v) Low levels of DPA were sufficient for the viability of spores that lacked most α/β-type small, acid-soluble spore proteins. (vi) DPA levels accumulated in spores prepared in low-DPA-containing media varied greatly between individual spores, in contrast to the presence of more homogeneous DPA levels in individual spores made in media with high DPA concentrations. (vii) At least the great majority of spores of several spoVF strains that contained no DPA also lacked other major spore small molecules and had gone through some of the early reactions in spore germination

    Role of Dipicolinic Acid in the Germination Stability and Viability of Spores of Bacillus subtilis

    No full text
    Spores of Bacillus subtilis spoVF strains that cannot synthesize dipicolinic acid (DPA) but take it up during sporulation were prepared in medium with various DPA concentrations and the germination and viability of these spores as well as the DPA content in individual spores were measured. Levels of some other small molecules in DPA-less spores were also measured. These studies have allowed the following conclusions. (i) Spores with no DPA or low DPA levels that lack either the cortex-lytic enzyme (CLE) SleB or the receptors that respond to nutrient germinants could be isolated but were unstable and spontaneously initiated early steps in spore germination. (ii) Spores that lacked SleB and nutrient germinant receptors and also had low DPA levels were more stable. (iii) Spontaneous germination of spores with no DPA or low DPA levels was at least in part via activation of SleB. (iv) The other redundant CLE CwlJ was activated only by the release of high levels of DPA from spores. (v) Low levels of DPA were sufficient for the viability of spores that lacked most / -type small acid-soluble spore proteins. (vi) DPA levels accumulated in spores prepared in low-DPA-containing media varied greatly between individual spores in contrast to the presence of more homogeneous DPA levels in individual spores made in media with high DPA concentrations. (vii) At least the great majority of spores of several spoVF strains that contained no DPA also lacked other major spore small molecules and had gone through some of the early reactions in spore germination. Originally published Journal of Bacteriology Vol. 190 No. 14 July 200

    Role of Dipicolinic Acid in the Germination, Stability, and Viability of Spores of Bacillus subtilis

    No full text
    Spores of Bacillus subtilis spoVF strains that cannot synthesize dipicolinic acid (DPA) but take it up during sporulation were prepared in medium with various DPA concentrations, and the germination and viability of these spores as well as the DPA content in individual spores were measured. Levels of some other small molecules in DPA-less spores were also measured. These studies have allowed the following conclusions. (i) Spores with no DPA or low DPA levels that lack either the cortex-lytic enzyme (CLE) SleB or the receptors that respond to nutrient germinants could be isolated but were unstable and spontaneously initiated early steps in spore germination. (ii) Spores that lacked SleB and nutrient germinant receptors and also had low DPA levels were more stable. (iii) Spontaneous germination of spores with no DPA or low DPA levels was at least in part via activation of SleB. (iv) The other redundant CLE, CwlJ, was activated only by the release of high levels of DPA from spores. (v) Low levels of DPA were sufficient for the viability of spores that lacked most / -type small, acid-soluble spore proteins. (vi) DPA levels accumulated in spores prepared in low-DPA-containing media varied greatly between individual spores, in contrast to the presence of more homogeneous DPA levels in individual spores made in media with high DPA concentrations. (vii) At least the great majority of spores of several spoVF strains that contained no DPA also lacked other major spore small molecules and had gone through some of the early reactions in spore germination. Originally published Journal of Bacteriology, Vol. 190, No. 14, July 200

    Efficient Inhibition of Germination of Coat-Deficient Bacterial Spores by Multivalent Metal Cations, Including Terbium (Tb3+) â–¿

    No full text
    Release of dipicolinic acid (DPA) and its fluorescence with terbium (Tb3+) allow rapid measurement of the germination and viability of spores of Bacillus and Clostridium species. However, germination of coat-deficient Bacillus spores was strongly inhibited by Tb3+ and some other multivalent cations. Tb3+ also inhibited germination of coat-deficient Clostridium perfringens spores
    corecore