27 research outputs found

    Architecture of androgen receptor pathways amplifying glucagon-like peptide-1 insulinotropic action in male pancreatic Ξ² cells

    Get PDF
    Male mice lacking the androgen receptor (AR) in pancreatic Ξ² cells exhibit blunted glucose-stimulated insulin secretion (GSIS), leading to hyperglycemia. Testosterone activates an extranuclear AR in Ξ² cells to amplify glucagon-like peptide-1 (GLP-1) insulinotropic action. Here, we examined the architecture of AR targets that regulate GLP-1 insulinotropic action in male Ξ² cells. Testosterone cooperates with GLP-1 to enhance cAMP production at the plasma membrane and endosomes via: (1) increased mitochondrial production of CO2, activating the HCO3--sensitive soluble adenylate cyclase; and (2) increased GΞ±s recruitment to GLP-1 receptor and AR complexes, activating transmembrane adenylate cyclase. Additionally, testosterone enhances GSIS in human islets via a focal adhesion kinase/SRC/phosphatidylinositol 3-kinase/mammalian target of rapamycin complex 2 actin remodeling cascade. We describe the testosterone-stimulated AR interactome, transcriptome, proteome, and metabolome that contribute to these effects. This study identifies AR genomic and non-genomic actions that enhance GLP-1-stimulated insulin exocytosis in male Ξ² cells

    Obstacles on the way to the clinical visualisation of beta cells: looking for the Aeneas of molecular imaging to navigate between Scylla and Charybdis

    Get PDF
    For more than a decade, researchers have been trying to develop non-invasive imaging techniques for the in vivo measurement of viable pancreatic beta cells. However, in spite of intense research efforts, only one tracer for positron emission tomography (PET) imaging is currently under clinical evaluation. To many diabetologists it may remain unclear why the imaging world struggles to develop an effective method for non-invasive beta cell imaging (BCI), which could be useful for both research and clinical purposes. Here, we provide a concise overview of the obstacles and challenges encountered on the way to such BCI, in both native and transplanted islets. We discuss the major difficulties posed by the anatomical and cell biological features of pancreatic islets, as well as the chemical and physical limits of the main imaging modalities, with special focus on PET, SPECT and MRI. We conclude by indicating new avenues for future research in the field, based on several remarkable recent results

    Phagocyte-like NADPH oxidase (Nox2) promotes activation of p38MAPK in pancreatic ß-cells under glucotoxic conditions: Evidence for a requisite role of Ras-related C3 botulinum toxin substrate 1 (Rac1)

    No full text
    It is well established that glucotoxicity (caused by high glucose concentrations; HG) underlies pathogenesis of islet dysfunction in diabetes. We have recently demonstrated that Nox2 plays a requisite role in the generation of reactive oxygen species (ROS) under HG conditions, resulting in mitochondrial dysregulation and loss of islet ß-cell function. Herein, we investigated roles of Nox2 in the regulation of downstream stress kinase (p38MAPK) activation under HG conditions (20. mM; 24. h) in normal rodent islets and INS-1 832/13 cells. We observed that gp91-ds-tat, a specific inhibitor of Nox2, but not its inactive analog, significantly attenuated HG-induced Nox2 activation, ROS generation and p38MAPK activation, thus suggesting that Nox2 activation couples with p38MAPK activation. Since Rac1, is an integral member of the Nox2 holoenzyme, we also assessed the effects of Rac1 inhibitors (EHT 1864, NSC23766 and Ehop-016) on HG-induced p38MAPK activation in isolated ß-cells. We report a significant inhibition of p38MAPK phosphorylation by Rac1 inhibitors, implying a regulatory role for Rac1 in promoting the Nox2-p38MAPK signaling axis in the ß-cell under the duress of HG. 2-Bromopalmitate, a known inhibitor of protein (Rac1) palmitoylation, significantly reduced HG-induced p38MAPK phosphorylation. However, GGTI-2147, a specific inhibitor of geranylgeranylation of Rac1, failed to exert any significant effects on HG-induced p38MAPK activation. In conclusion, we present the first evidence that the Rac1-Nox2 signaling module plays novel regulatory roles in HG-induced p38MAPK activation and loss in glucose-stimulated insulin secretion (GSIS) culminating in metabolic dysfunction and the onset of diabetes

    Accurate measurement of pancreatic islet Ξ²-cell mass using a second-generation fluorescent exendin-4 analog

    No full text
    The hallmark of type 1 diabetes is autoimmune destruction of the insulin-producing Ξ²-cells of the pancreatic islets. Autoimmune diabetes has been difficult to study or treat because it is not usually diagnosed until substantial Ξ²-cell loss has already occurred. Imaging agents that permit noninvasive visualization of changes in Ξ²-cell mass remain a high-priority goal. We report on the development and testing of a near-infrared fluorescent Ξ²-cell imaging agent. Based on the amino acid sequence of exendin-4, we created a neopeptide via introduction of an unnatural amino acid at the K12 position, which could subsequently be conjugated to fluorophores via bioorthogonal copper-catalyzed click-chemistry. Cell assays confirmed that the resulting fluorescent probe (E4Γ—12-VT750) had a high binding affinity (∼3 nM). Its in vivo properties were evaluated using high-resolution intravital imaging, histology, whole-pancreas visualization, and endoscopic imaging. According to intravital microscopy, the probe rapidly bound to Ξ²-cells and, as demonstrated by confocal microscopy, it was internalized. Histology of the whole pancreas showed a close correspondence between fluorescence and insulin staining, and there was an excellent correlation between imaging signals and Ξ²-cell mass in mice treated with streptozotocin, a Ξ²-cell toxin. Individual islets could also be visualized by endoscopic imaging. In short, E4Γ—12-VT750 showed strong and selective binding to glucose-like peptide-1 receptors and permitted accurate measurement of Ξ²-cell mass in both diabetic and nondiabetic mice. This near-infrared imaging probe, as well as future radioisotope-labeled versions of it, should prove to be important tools for monitoring diabetes, progression, and treatment in both experimental and clinical contexts
    corecore