305 research outputs found
Traveling through potential energy landscapes of disordered materials: the activation-relaxation technique
A detailed description of the activation-relaxation technique (ART) is
presented. This method defines events in the configurational energy landscape
of disordered materials, such as a-Si, glasses and polymers, in a two-step
process: first, a configuration is activated from a local minimum to a nearby
saddle-point; next, the configuration is relaxed to a new minimum; this allows
for jumps over energy barriers much higher than what can be reached with
standard techniques. Such events can serve as basic steps in equilibrium and
kinetic Monte Carlo schemes.Comment: 7 pages, 2 postscript figure
Band gap renormalization in photoexcited semiconductor quantum wire structures in the GW approximation
We investigate the dynamical self-energy corrections of the electron-hole
plasma due to electron-electron and electron-phonon interactions at the band
edges of a quasi-one dimensional (1D) photoexcited electron-hole plasma. The
leading-order dynamical screening approximation is used in the calculation
by treating electron-electron Coulomb interaction and electron-optical phonon
Fr\"{o}hlich interaction on an equal footing. We calculate the
exchange-correlation induced band gap renormalization (BGR) as a function of
the electron-hole plasma density and the quantum wire width. The calculated BGR
shows good agreement with existing experimental results, and the BGR normalized
by the effective quasi-1D excitonic Rydberg exhibits an approximate
one-parameter universality.Comment: 11 pages, 3 figure
Ionization degree of the electron-hole plasma in semiconductor quantum wells
The degree of ionization of a nondegenerate two-dimensional electron-hole
plasma is calculated using the modified law of mass action, which takes into
account all bound and unbound states in a screened Coulomb potential.
Application of the variable phase method to this potential allows us to treat
scattering and bound states on the same footing. Inclusion of the scattering
states leads to a strong deviation from the standard law of mass action. A
qualitative difference between mid- and wide-gap semiconductors is
demonstrated. For wide-gap semiconductors at room temperature, when the bare
exciton binding energy is of the order of T, the equilibrium consists of an
almost equal mixture of correlated electron-hole pairs and uncorrelated free
carriers.Comment: 22 pages, 6 figure
Dynamic exchange-correlation potentials for the electron gas in dimensionality D=3 and D=2
Recent progress in the formulation of a fully dynamical local approximation
to time-dependent Density Functional Theory appeals to the longitudinal and
transverse components of the exchange and correlation kernel in the linear
current-density response of the homogeneous fluid at long wavelength. Both
components are evaluated for the electron gas in dimensionality D=3 and D=2 by
an approximate decoupling in the equation of motion for the current density,
which accounts for processes of excitation of two electron-hole pairs. Each
pair is treated in the random phase approximation, but the role of exchange and
correlation is also examined; in addition, final-state exchange processes are
included phenomenologically so as to satisfy the exactly known high-frequency
behaviours of the kernel. The transverse and longitudinal spectra involve the
same decay channels and are similar in shape. A two-plasmon threshold in the
spectrum for two-pair excitations in D=3 leads to a sharp minimum in the real
part of the exchange and correlation kernel at twice the plasma frequency. In
D=2 the same mechanism leads to a broad spectral peak and to a broad minimum in
the real part of the kernel, as a consequence of the dispersion law of the
plasmon vanishing at long wavelength. The numerical results have been fitted to
simple analytic functions.Comment: 13 pages, 11 figures included. Accepted for publication in Phys. Rev.
Simulation of thermal conductivity and heat transport in solids
Using molecular dynamics (MD) with classical interaction potentials we
present calculations of thermal conductivity and heat transport in crystals and
glasses. Inducing shock waves and heat pulses into the systems we study the
spreading of energy and temperature over the configurations. Phonon decay is
investigated by exciting single modes in the structures and monitoring the time
evolution of the amplitude using MD in a microcanonical ensemble. As examples,
crystalline and amorphous modifications of Selenium and are
considered.Comment: Revtex, 8 pages, 11 postscript figures, accepted for publication in
PR
What are the experimentally observable effects of vertex corrections in superconductors?
We calculate the effects of vertex corrections, of non-constant density of
states and of a (self-consistently determined) phonon self-energy for the
Holstein model on a 3D cubic lattice. We replace vertex corrections with a
Coulomb pseudopotential, mu*, adjusted to give the same Tc, and repeat the
calculations, to see which effects are a distinct feature of vertex
corrections. This allows us to determine directly observable effects ofvertex
corrections on a variety of thermodynamic properties of superconductors. To
this end, we employ conserving approximations (in the local approximation) to
calculate the superconducting critical temperatures, isotope coefficients,
superconducting gaps, free-energy differences and thermodynamic critical fields
for a range of parameters. We find that the dressed value of lambda is
significantly larger than the bare value. While vertex corrections can cause
significant changes in all the above quantities (even whenthe bare
electron-phonon coupling is small), the changes can usually be well-modeled by
an appropriate Coulomb pseudopotential. The isotope coefficient proves to be
the quantity that most clearly shows effects of vertex corrections that can not
be mimicked by a mu*.Comment: 28 pages, 12 figure
Coupling atomistic and continuum length scales in heteroepitaxial systems: Multiscale molecular-dynamics/finite-element simulations of strain relaxation in Si/Si3N4 nanopixels
A hybrid atomistic-continuum simulation approach has been implemented to study strain relaxation in lattice-mismatched Si/Si3N4 nanopixels on a Si(111) substrate. We couple the molecular-dynamics (MD) and finite-element simulation approaches to provide an atomistic description near the interface and a continuum description deep into the substrate, increasing the accessible length scales and greatly reducing the computational cost. The results of the hybrid simulation are validated against full multimillion-atom MD simulations. We find that strain relaxation in Si/Si3N4 nanopixels may occur through the formation of a network of interfacial domain boundaries reminiscent of interfacial misfit dislocations. They result from the nucleation of domains of different interfacial bonding at the free edges and corners of the nanopixel, and subsequent to their creation they propagate inwards. We follow the motion of the domain boundaries and estimate a propagation speed of about similar to 2.5x10(3) m/s. The effects of temperature, nanopixel architecture, and film structure on strain relaxation are also investigated. We find: (i) elevated temperature increases the interfacial domain nucleation rates; (ii) a thin compliant Si layer between the film and the substrate plays a beneficial role in partially suppressing strain relaxation; and (iii) additional control over the interface morphology may be achieved by varying the film structure.Physical Review
Simultaneous Observation of Carrier-Specific Redistribution and Coherent Lattice Dynamics in 2H-MoTe with Femtosecond Core-Level Spectroscopy
We employ few-femtosecond extreme ultraviolet (XUV) transient absorption
spectroscopy to reveal simultaneously the intra- and interband carrier
relaxation and the light-induced structural dynamics in nanoscale thin films of
layered 2H-MoTe semiconductor. By interrogating the valence electronic
structure via localized Te 4 (39-46 eV) and Mo 4 (35-38
eV) core levels, the relaxation of the photoexcited hole distribution is
directly observed in real time. We obtain hole thermalization and cooling times
of 155 fs and 38090 fs, respectively, and an electron-hole
recombination time of 1.50.1 ps. Furthermore, excitations of coherent
out-of-plane A (5.1 THz) and in-plane E (3.7 THz) lattice
vibrations are visualized through oscillations in the XUV absorption spectra.
By comparison to Bethe-Salpeter equation simulations, the spectral changes are
mapped to real-space excited-state displacements of the lattice along the
dominant A coordinate. By directly and simultaneously probing the
excited carrier distribution dynamics and accompanying femtosecond lattice
displacement in 2H-MoTe within a single experiment, our work provides a
benchmark for understanding the interplay between electronic and structural
dynamics in photoexcited nanomaterials
Glass breaks like metals, but at the nanometer scale
We report in situ Atomic Force Microscopy experiments which reveal the
presence of nanoscale damage cavities ahead of a stress-corrosion crack tip in
glass. Their presence might explain the departure from linear elasticity
observed in the vicinity of a crack tip in glass. Such a ductile fracture
mechanism, widely observed in the case of metallic materials at the micrometer
scale, might be also at the origin of the striking similarity of the
morphologies of fracture surfaces of glass and metallic alloys at different
length scales.Comment: 4 pages, 4 figures, to appear in Phys. Rev. Lett, few minor
corrections, Fig. 1b change
- …
