182 research outputs found

    High-speed >90% quantum-efficiency p–i–n photodiodes with a resonance wavelength adjustable in the 795–835 nm range

    Get PDF
    Cataloged from PDF version of article.We report GaAs/AlGaAs-based high-speed, high-efficiency, resonant cavity enhanced p–i–nphotodiodes. The devices were fabricated by using a microwave-compatible fabrication process. By using a postprocess recess etch, we tuned the resonance wavelength from 835 to 795 nm while keeping the peak efficiencies above 90%. The maximum quantum efficiency was 92% at a resonance wavelength of 823 nm. The photodiode had an experimental setup-limited temporal response of 12 ps. When the system response is deconvolved, the 3 dB bandwidth corresponds to 50 GHz, which is in good agreement with our theoretical calculations. © 1999 American Institute of Physic

    Palaeozoic-Recent geological development and uplift of the Amanos Mountains (S Turkey) in the critically located northwesternmost corner of the Arabian continent

    Get PDF
    <p>We have carried out a several-year-long study of the Amanos Mountains, on the basis of which we present new sedimentary and structural evidence, which we combine with existing data, to produce the first comprehensive synthesis in the regional geological setting. The ca. N-S-trending Amanos Mountains are located at the northwesternmost edge of the Arabian plate, near the intersection of the African and Eurasian plates. Mixed siliciclastic-carbonate sediments accumulated on the north-Gondwana margin during the Palaeozoic. Triassic rift-related sedimentation was followed by platform carbonate deposition during Jurassic-Cretaceous. Late Cretaceous was characterised by platform collapse and southward emplacement of melanges and a supra-subduction zone ophiolite. Latest Cretaceous transgressive shallow-water carbonates gave way to deeper-water deposits during Palaeocene-Eocene. Eocene southward compression, reflecting initial collision, resulted in open folding, reverse faulting and duplexing. Fluvial, lagoonal and shallow-marine carbonates accumulated during Late Oligocene(?)-Early Miocene, associated with basaltic magmatism. Intensifying collision during Mid-Miocene initiated a foreland basin that then infilled with deep-water siliciclastic gravity flows. Late Miocene-Early Pliocene compression created mountain-sized folds and thrusts, verging E in the north but SE in the south. The resulting surface uplift triggered deposition of huge alluvial outwash fans in the west. Smaller alluvial fans formed along both mountain flanks during the Pleistocene after major surface uplift ended. Pliocene-Pleistocene alluvium was tilted towards the mountain front in the west. Strike-slip/transtension along the East Anatolian Transform Fault and localised sub-horizontal Quaternary basaltic volcanism in the region reflect regional transtension during Late Pliocene-Pleistocene (<4 Ma).</p

    Effects of S1 Cleavage on the Structure, Surface Export, and Signaling Activity of Human Notch1 and Notch2

    Get PDF
    Notch receptors are normally cleaved during maturation by a furin-like protease at an extracellular site termed S1, creating a heterodimer of non-covalently associated subunits. The S1 site lies within a key negative regulatory region (NRR) of the receptor, which contains three highly conserved Lin12/Notch repeats and a heterodimerization domain (HD) that interact to prevent premature signaling in the absence of ligands. Because the role of S1 cleavage in Notch signaling remains unresolved, we investigated the effect of S1 cleavage on the structure, surface trafficking and ligand-mediated activation of human Notch1 and Notch2, as well as on ligand-independent activation of Notch1 by mutations found in human leukemia.The X-ray structure of the Notch1 NRR after furin cleavage shows little change when compared with that of an engineered Notch1 NRR lacking the S1-cleavage loop. Likewise, NMR studies of the Notch2 HD domain show that the loop containing the S1 site can be removed or cleaved without causing a substantial change in its structure. However, Notch1 and Notch2 receptors engineered to resist S1 cleavage exhibit unexpected differences in surface delivery and signaling competence: S1-resistant Notch1 receptors exhibit decreased, but detectable, surface expression and ligand-mediated receptor activation, whereas S1-resistant Notch2 receptors are fully competent for cell surface delivery and for activation by ligands. Variable dependence on S1 cleavage also extends to T-ALL-associated NRR mutations, as common class 1 mutations display variable decrements in ligand-independent activation when introduced into furin-resistant receptors, whereas a class 2 mutation exhibits increased signaling activity.S1 cleavage has distinct effects on the surface expression of Notch1 and Notch2, but is not generally required for physiologic or pathophysiologic activation of Notch proteins. These findings are consistent with models for receptor activation in which ligand-binding or T-ALL-associated mutations lead to conformational changes of the NRR that permit metalloprotease cleavage

    Increased cardiovascular risk in rats with primary renal dysfunction; mediating role for vascular endothelial function

    Get PDF
    Primary chronic kidney disease is associated with high cardiovascular risk. However, the exact mechanisms behind this cardiorenal interaction remain unclear. We investigated the interaction between heart and kidneys in novel animal model for cardiorenal interaction. Normal Wistar rats and Munich Wistar Fromter rats, spontaneously developing renal dysfunction, were subjected to experimental myocardial infarction to induce cardiac dysfunction (CD) and combined cardiorenal dysfunction (CRD), respectively (N = 5–10). Twelve weeks later, cardiac- and renal parameters were evaluated. Cardiac, but not renal dysfunction was exaggerated in CRD. Accelerated cardiac dysfunction in CRD was indicated by decreased cardiac output (CD 109 ± 10 vs. CRD 79 ± 8 ml/min), diastolic dysfunction (E/e′) (CD 26 ± 2 vs. CRD 50 ± 5) and left ventricular overload (LVEDP CD 10.8 ± 2.8 vs. CRD 21.6 ± 1.7 mmHg). Congestion in CRD was confirmed by increased lung and atrial weights, as well as exaggerated right ventricular hypertrophy. Absence of accelerated renal dysfunction, measured by increased proteinuria, was supported by absence of additional focal glomerulosclerosis or further decline of renal blood flow in CRD. Only advanced peripheral endothelial dysfunction, as found in CRD, appeared to correlate with both renal and cardiac dysfunction parameters. Thus, proteinuric rats with myocardial infarction showed accelerated cardiac but not renal dysfunction. As parameters mimic the cardiorenal syndrome, these rats may provide a clinically relevant model to study increased cardiovascular risk due to renal dysfunction. Peripheral endothelial dysfunction was the only parameter that correlated with both renal and cardiac dysfunction, which may indicate a mediating role in cardiorenal interaction

    Assessment of the requisites of microbiology based infectious disease training under the pressure of consultation needs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Training of infectious disease (ID) specialists is structured on classical clinical microbiology training in Turkey and ID specialists work as clinical microbiologists at the same time. Hence, this study aimed to determine the clinical skills and knowledge required by clinical microbiologists.</p> <p>Methods</p> <p>A cross-sectional study was carried out between June 1, 2010 and September 15, 2010 in 32 ID departments in Turkey. Only patients hospitalized and followed up in the ID departments between January-June 2010 who required consultation with other disciplines were included.</p> <p>Results</p> <p>A total of 605 patients undergoing 1343 consultations were included, with pulmonology, neurology, cardiology, gastroenterology, nephrology, dermatology, haematology, and endocrinology being the most frequent consultation specialties. The consultation patterns were quite similar and were not affected by either the nature of infections or the critical clinical status of ID patients.</p> <p>Conclusions</p> <p>The results of our study show that certain internal medicine subdisciplines such as pulmonology, neurology and dermatology appear to be the principal clinical requisites in the training of ID specialists, rather than internal medicine as a whole.</p

    Comparison of Effects of Ivabradine versus Carvedilol in Murine Model with the Coxsackievirus B3-Induced Viral Myocarditis

    Get PDF
    BACKGROUND: Elevated heart rate is associated with increased cardiovascular morbidity. The selective I(f) current inhibitor ivabradine reduces heart rate without affecting cardiac contractility, and has been shown to be cardioprotective in the failing heart. Ivabradine also exerts some of its beneficial effects by decreasing cardiac proinflammatory cytokines and inhibiting peroxidants and collagen accumulation in atherosclerosis or congestive heart failure. However, the effects of ivabradine in the setting of acute viral myocarditis and on the cytokines, oxidative stress and cardiomyocyte apoptosis have not been investigated. METHODOLOGY/PRINCIPAL FINDINGS: The study was designed to compare the effects of ivabradine and carvedilol in acute viral myocarditis. In a coxsackievirus B3 murine myocarditis model (Balb/c), effects of ivabradine and carvedilol (a nonselective β-adrenoceptor antagonist) on myocardial histopathological changes, cardiac function, plasma noradrenaline, cytokine levels, cardiomyocyte apoptosis, malondialdehyde and superoxide dismutase contents were studied. Both ivabradine and carvedilol similarly and significantly reduced heart rate, attenuated myocardial lesions and improved the impairment of left ventricular function. In addition, ivabradine treatment as well as carvedilol treatment showed significant effects on altered myocardial cytokines with a decrease in the amount of plasma noradrenaline. The increased myocardial MCP-1, IL-6, and TNF-α. in the infected mice was significantly attenuated in the ivabradine treatment group. Only carvedilol had significant anti-oxidative and anti-apoptoic effects in coxsackievirus B3-infected mice. CONCLUSIONS/SIGNIFICANCE: These results show that the protective effects of heart rate reduction with ivabradine and carvedilol observed in the acute phase of coxsackievirus B3 murine myocarditis may be due not only to the heart rate reduction itself but also to the downregulation of inflammatory cytokines

    Animal models of cardiorenal syndrome: a review

    Get PDF
    The incidence of heart failure and renal failure is increasing and is associated with poor prognosis. Moreover, these conditions do often coexist and this coexistence results in worsened outcome. Various mechanisms have been proposed as an explanation of this interrelation, including changes in hemodynamics, endothelial dysfunction, inflammation, activation of renin-angiotensin-aldosterone system, and/or sympathetic nervous system. However, the exact mechanisms initializing and maintaining this interaction are still unknown. In many experimental studies on cardiac or renal dysfunction, the function of the other organ was either not addressed or the authors failed to show any decline in its function despite histological changes. There are few studies in which the dysfunction of both heart and kidney function has been described. In this review, we discuss animal models of combined cardiorenal dysfunction. We show that translation of the results from animal studies is limited, and there is a need for new and better models of the cardiorenal interaction to improve our understanding of this syndrome. Finally, we propose several requirements that a new animal model should meet to serve as a tool for studies on the cardiorenal syndrome
    corecore