756 research outputs found

    Thermodynamics and short-range correlations of the XXZ chain close to its triple point

    Full text link
    The XXZ quantum spin chain has a triple point in its ground state hh-1/Δ1/\Delta phase diagram. This first order critical point is located at the joint end point of the two second order phase transition lines marking the transition from the gapless phase to the fully polarized phase and to the N\'eel ordered phase, respectively. We explore the magnetization and the short-range correlation functions in its vicinity using the exact solution of the model. In the critical regime above the triple point we observe a strong variation of all physical quantities on a low energy scale of order 1/Δ1/\Delta induced by the transversal quantum fluctuations. We interpret this phenomenon starting from a strong-coupling perturbation theory about the highly degenerate ground state of the Ising chain at the triple point. From the perturbation theory we identify the relevant scaling of the magnetic field and of the temperature. Applying the scaling to the exact solutions we obtain explicit formulae for the magnetization and short-range correlation functions at low temperatures.Comment: 18 pages, 7 figures, v2: figures rearranged, v3: a typo correcte

    A search for linear polarization in the active galactic nucleus 3C 84 at 239 and 348 GHz

    Full text link
    We report a search for linear polarization in the active galactic nucleus (AGN) 3C 84 (NGC 1275) at observed frequencies of 239 GHz and 348 GHz, corresponding to rest-frame frequencies of 243 GHz and 354 GHz. We collected polarization data with the IRAM Plateau de Bure Interferometer via Earth rotation polarimetry. We do not detect linear polarization. Our analysis finds 3-sigma upper limits on the degree of polarization of 0.5% and 1.9% at 239 GHz and 348 GHz, respectively. We regard the influence of Faraday conversion as marginal, leading to expected circular polarizations <0.3%. Assuming depolarization by a local Faraday screen, we constrain the rotation measure, as well as the fluctuations therein, to be 10^6 rad/m^2. From this we estimate line-of-sight magnetic field strengths of >100 microG. Given the physical dimensions of 3C 84 and its observed structure, the Faraday screen appears to show prominent small-scale structure, with \DeltaRM > 10^6 rad/m^2 on projected spatial scales <1 pc.Comment: 7 pages, 4 figures. Accepted by MNRA

    A polarised infrared flare from Sagittarius A* and the signatures of orbiting plasma hotspots

    Get PDF
    In this article we summarise and discuss the infrared, radio, and X-ray emission from the supermassive black hole in the Galactic Centre, SgrA*. We include new results from near-infrared polarimetric imaging observations obtained on May 31st, 2006. In that night, a strong flare in Ks band (2.08 microns) reaching top fluxes of ~16 mJy could be observed. This flare was highly polarised (up to ~40%) and showed clear sub-structure on a time scale of 15 minutes, including a swing in the polarisation angle of about 70 degrees. For the first time we were able to observe both polarised flux and short-time variability, with high significance in the same flare event. This result adds decisive information to the puzzle of the SgrA* activity. The observed polarisation angle during the flare peak is the same as observed in two events in 2004 and 2005. Our observations strongly support the dynamical emission model of a decaying plasma hotspot orbiting SgrA* on a relativistic orbit. The observed polarisation parameters and their variability with time might allow to constrain the orientation of accretion disc and spin axis with respect to the Galaxy.Comment: 9 pages, 8 figures, accepted for publication in MNRA

    On the nature of the fast moving star S2 in the Galactic Center

    Full text link
    We analyze the properties of the star S2 orbiting the supermassive black hole at the center of the Galaxy. A high quality SINFONI H and K band spectrum obtained from coadding 23.5 hours of observation between 2004 and 2007 reveals that S2 is an early B dwarf (B0-2.5V). Using model atmospheres, we constrain its stellar and wind properties. We show that S2 is a genuine massive star, and not the core of a stripped giant star as sometimes speculated to resolve the problem of star formation so close to the supermassive black hole. We give an upper limit on its mass loss rate, and show that it is He enriched, possibly because of the presence of a magnetic field.Comment: 4 pages, 5 figures, ApJ letters accepte

    The first IRAM/PdBI polarimetric millimeter survey of active galactic nuclei. II. Activity and properties of individual sources

    Full text link
    We present an analysis of the linear polarization of six active galactic nuclei - 0415+379 (3C~111), 0507+179, 0528+134 (OG+134), 0954+658, 1418+546 (OQ+530), and 1637+574 (OS+562). Our targets were monitored from 2007 to 2011 in the observatory-frame frequency range 80-253 GHz, corresponding to a rest-frame frequency range 88-705 GHz. We find average degrees of polarization m_L ~ 2-7%; this indicates that the polarization signals are effectively averaged out by the emitter geometries. We see indication for fairly strong shocks and/or complex, variable emission region geometries in our sources, with compression factors 10 deg. An analysis of correlations between source fluxes and polarization parameter points out special cases: the presence of (at least) two distinct emission regions with different levels of polarization (for 0415+379) as well as emission from a single, predominant component (for 0507+179 and 1418+546). Regarding the evolution of flux and polarization, we find good agreement between observations and the signal predicted by "oblique shock in jet" scenarios in one source (1418+546). We attempt to derive rotation measures for all sources, leading to actual measurements for two AGN and upper limits for three sources. We derive values of RM = -39,000 +/- 1,000 (stat) +/- 13,000 (sys) rad/m^2 and RM = 420,000 +/- 10,000 (stat) +/- 110,000 (sys) rad/m^2 for 1418+546 and 1637+574, respectively; these are the highest values reported to date for AGN. These values indicate magnetic field strengths of the order ~0.0001 G. For 0415+379, 0507+179, and 0954+658 we derive upper limits |RM| < 17,000 rad/m^2. From the relation |RM| ~ nu^a we find a = 1.9 +/- 0.3 for 1418+546, in good agreement with a = 2 as expected for a spherical or conical outflow.Comment: 23 pages, 8 figures, 4 tables. Accepted by Astronomy and Astrophysics. Minor language editing, one missing reference (Macquart et al. 2006) adde

    GCIRS16SW: a massive eclipsing binary in the Galactic Center

    Get PDF
    We report on the spectroscopic monitoring of GCIRS16SW, an Ofpe/WN9 star and LBV candidate in the central parsec of the Galaxy. SINFONI observations show strong daily spectroscopic changes in the K band. Radial velocities are derived from the HeI 2.112 um line complex and vary regularly with a period of 19.45 days, indicating that the star is most likely an eclipsing binary. Under various assumptions, we are able to derive a mass of ~ 50 Msun for each component.Comment: 4 pages, 4 figures, ApJ Letters accepte

    The Position of Sagittarius A*: III. Motion of the Stellar Cusp

    Get PDF
    In the first two papers of this series, we determined the position of Sgr A* on infrared images, by aligning the positions of red giant stars with positions measured at radio wavelengths for their circumstellar SiO masers. In this paper, we report detections of 5 new stellar SiO masers within 50" (2 pc) of Sgr A* and new and/or improved positions and proper motions of 15 stellar SiO masers. The current accuracies are ~1 mas in position and ~0.3 mas/y in proper motion. We find that the proper motion of the central stellar cluster with respect to Sgr A* is less than 45 km/s. One star, IRS 9, has a three-dimensional speed of ~370 km/s at a projected distance of 0.33 pc from Sgr A*. If IRS 9 is bound to the inner parsec, this requires an enclosed mass that exceeds current estimates of the sum of the mass of Sgr A* and luminous stars in the stellar cusp by ~0.8 x 10^6 Msun. Possible explanations include i) that IRS 9 is not bound to the central parsec and has "fallen" from a radius greater than 9 pc, ii) that a cluster of dark stellar remnants accounts for some of the excess mass, and/or iii) that Ro is considerably greater than 8 kpc.Comment: 27 pages including 5 figures and 4 table
    corecore