494 research outputs found

    Stabilization by Use of Chemicals

    Get PDF

    A high-accuracy consensus map of yeast protein complexes reveals modular nature of gene essentiality

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Identifying all protein complexes in an organism is a major goal of systems biology. In the past 18 months, the results of two genome-scale tandem affinity purification-mass spectrometry (TAP-MS) assays in yeast have been published, along with corresponding complex maps. For most complexes, the published data sets were surprisingly uncorrelated. It is therefore useful to consider the raw data from each study and generate an accurate complex map from a high-confidence data set that integrates the results of these and earlier assays.</p> <p>Results</p> <p>Using an unsupervised probabilistic scoring scheme, we assigned a confidence score to each interaction in the matrix-model interpretation of the large-scale yeast mass-spectrometry data sets. The scoring metric proved more accurate than the filtering schemes used in the original data sets. We then took a high-confidence subset of these interactions and derived a set of complexes using MCL. The complexes show high correlation with existing annotations. Hierarchical organization of some protein complexes is evident from inter-complex interactions.</p> <p>Conclusion</p> <p>We demonstrate that our scoring method can generate an integrated high-confidence subset of observed matrix-model interactions, which we subsequently used to derive an accurate map of yeast complexes. Our results indicate that essentiality is a product of the protein complex rather than the individual protein, and that we have achieved near saturation of the yeast high-abundance, rich-media-expressed "complex-ome."</p

    El aprendizaje cooperativo desde una perspectiva Ă©tica

    Get PDF
    El presente artĂ­culo analiza desde una perspectiva Ă©tica, la metodologĂ­a y los recursos pedagĂłgicos del aprendizaje cooperativo. Mediante la aplicaciĂłn de una metodologĂ­a de anĂĄlisis hermenĂ©utico-crĂ­tica evaluamos su validez, su credibilidad y su pertinencia en el ĂĄmbito educativo de acuerdo con los valores morales fundamentales de una Ă©tica cĂ­vica y democrĂĄtica. Concluimos que el aprendizaje cooperativo supone una metodologĂ­a propicia y enteramente favorable para el despliegue de una Ă©tica democrĂĄtica, siendo un modelo educativo que reĂșne magistralmente las aspiraciones de maduraciĂłn cognitivo–intelectual y moral del alumnado en un contexto de colaboraciĂłn y solidaridad. En este sentido, el aprendizaje cooperativo puede ser un prototipo o patrĂłn metodolĂłgico que ejemplifica la renovaciĂłn pedagĂłgica que exigen las sociedades plurales y participativas

    Predictors of nonadherence among patients with infectious complications of substance use who are discharged on parenteral antimicrobial therapy

    Get PDF
    BACKGROUND: The management of invasive infections related to substance use disorder (SUD) needing parenteral antimicrobial therapy is challenging and may have poor treatment outcomes including nonadherence and lack of completion of parenteral antimicrobial therapy. METHODS: In this retrospective cohort of 201 patients with invasive infections related to SUD, we looked at frequency and determinants of unfavorable outcomes including nonadherence. RESULTS: Seventy-nine percent of patients with SUD-related infection completed parenteral antibiotic therapy in skilled nursing facilities. A total of 21.5% of patient episodes had documentation of nonadherence. Nonadherence was higher in patients with active injection drug use (IDU) (28.5% versus 15% in non IDU; adjusted odds ratio [OR] 2.36; 95% confidence interval [CI], 1.1-5.5; CONCLUSIONS: Nonadherence to parenteral antimicrobial therapy is high in the most vulnerable patients with unstable high-risk SUD and adverse social determinants of health

    Characterization of a polymorphism in NAD(P)H: quinone oxidoreductase (DT-diaphorase).

    Get PDF
    NAD(P)H:quinone oxidoreductase (NQO1, EC 1.6.99.2) is an obligate two-electron reductase that can either bioactivate or detoxify quinones and has been proposed to play an important role in chemoprevention. We have previously characterized a homozygous point mutation in the BE human colon carcinoma cell line that leads to a loss of NQO1 activity. Sequence analysis showed that this mutation was at position 609 of the NQO1 cDNA, conferring a proline to serine substitution at position 187 of the NQO1 enzyme. Using polymerase chain reaction (PCR) analysis, we have found that the H596 human non-small-cell lung cancer (NSCLC) cell line has elevated NQO1 mRNA, but no detectable enzyme activity. Sequencing of the coding region of NQO1 from the H596 cells showed the presence of the identical homozygous point mutation present in the BE cell line. Expression and purification of recombinant wild-type and mutant protein from E. coli showed that mutant protein could be detected using immunoblot analysis and had 2% of the enzymatic activity of the wild-type protein. PCR and Northern blot analysis showed moderate to low levels of expression of the correctly sized transcript in the mutant cells. Immunoblot analysis also revealed that recombinant mutant protein was immunoreactive; however, the mutant protein was not detected in the cytosol of either BE or H596 cells, suggesting that the mutant proteins were either not translated or were rapidly degraded. The absence of any detectable, active protein, therefore, appears to be responsible for the lack of NQO1 activity in cells homozygous for the mutation. A polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis for the mutation at position 609 conducted on 90 human lung tissue samples (45 matched sets of tumour and uninvolved tissue) revealed a 7% incidence of individuals homozygous for the mutation, and 42% heterozygous for the mutation. These data suggest that the mutation at position 609 represents a polymorphism in an important xenobiotic metabolizing enzyme, which has implications for cancer therapy, chemoprevention and chemoprotection

    A map of human protein interactions derived from co-expression of human mRNAs and their orthologs

    Get PDF
    The human protein interaction network will offer global insights into the molecular organization of cells and provide a framework for modeling human disease, but the network's large scale demands new approaches. We report a set of 7000 physical associations among human proteins inferred from indirect evidence: the comparison of human mRNA co-expression patterns with those of orthologous genes in five other eukaryotes, which we demonstrate identifies proteins in the same physical complexes. To evaluate the accuracy of the predicted physical associations, we apply quantitative mass spectrometry shotgun proteomics to measure elution profiles of 3013 human proteins during native biochemical fractionation, demonstrating systematically that putative interaction partners tend to co-sediment. We further validate uncharacterized proteins implicated by the associations in ribosome biogenesis, including WBSCR20C, associated with Williams–Beuren syndrome. This meta-analysis therefore exploits non-protein-based data, but successfully predicts associations, including 5589 novel human physical protein associations, with measured accuracies of 54±10%, comparable to direct large-scale interaction assays. The new associations' derivation from conserved in vivo phenomena argues strongly for their biological relevance

    A collection of three integration-free iPSCs derived from old male and female healthy subjects

    Get PDF
    Here, we present the characterization of three iPSC lines derived from dermal fibroblasts of old healthy subjects. Fibroblasts were reprogrammed using Sendai viral vectors encoding OCT4, SOX2, KLF4 and c-MYC. The iPSCs expressed endogenous pluripotency markers, could generate the three germ layers (ectoderm, mesoderm and endoderm), maintained a stable karyotype, and were free from Sendai vectors and reprogramming factors. These integration-free iPSCs can serve for establishing control cell cultures in studies searching for phenotypes and mechanisms that could potentially be dysregulated in degenerative diseases

    CREB is a critical regulator of normal hematopoiesis and leukemogenesis

    Get PDF
    The cAMP-responsive element binding protein (CREB) is a 43-kDa nuclear transcription factor that regulates cell growth, memory, and glucose homeostasis. We showed previously that CREB is amplified in myeloid leukemia blasts and expressed at higher levels in leukemia stem cells from patients with myeloid leukemia. CREB transgenic mice develop myeloproliferative disease after 1 year, but not leukemia, suggesting that CREB contributes to but is not sufficient for leukemogenesis. Here, we show that CREB is most highly expressed in lineage negative hematopoietic stem cells (HSCs). To understand the role of CREB in hematopoietic progenitors and leukemia cells, we examined the effects of RNA interference (RNAi) to knock down CREB expression in vitro and in vivo. Transduction of primary HSCs or myeloid leukemia cells with lentiviral CREB shRNAs resulted in decreased proliferation of stem cells, cell- cycle abnormalities, and inhibition of CREB transcription. Mice that received transplants of bone marrow transduced with CREB shRNA had decreased committed progenitors compared with control mice. Mice injected with Ba/F3 cells expressing either Bcr-Abl wild-type or T315I mutation with CREB shRNA had delayed leukemic infiltration by bioluminescence imaging and prolonged median survival. Our results suggest that CREB is critical for normal myelopoiesis and leukemia cell proliferation
    • 

    corecore