43 research outputs found

    Maximizing conservation and production with intensive forest management: It’s all about location

    Get PDF
    Functional zoning has been suggested as a way to balance the needs of a viable forest industry with those of healthy ecosystems. Under this system, part of the forest is set aside for protected areas, counterbalanced by intensive and extensive management of the rest of the forest. Studies indicate this may provide adequate timber while minimizing road construction and favoring the development of large mature and old stands. However, it is unclear how the spatial arrangement of intensive management areas may affect the success of this zoning. Should these areas be agglomerated or dispersed throughout the forest landscape? Should managers prioritize (a) proximity to existing roads, (b) distance from protected areas, or (c) site specific productivity? We use a spatially explicit landscape simulation model to examine the effects of different spatial scenarios on landscape structure, connectivity for native forest wildlife, stand diversity, harvest volume, and road construction: (1) random placement of intensive management areas, and (2–8) all possible combinations of rules (a)–(c). Results favor the agglomeration of intensive management areas. For most wildlife species, connectivity was the highest when intensive management was far from the protected areas. This scenario also resulted in relatively high harvest volumes. Maximizing distance of intensive management areas from protected areas may therefore be the best way to maximize the benefits of intensive management areas while minimizing their potentially negative effects on forest structure and biodiversity

    From management to stewardship: Viewing forests as complex adaptive systems in an uncertain world

    Get PDF
    The world's forests and forestry sector are facing unprecedented biological, political, social, and climatic challenges. The development of appropriate, novel forest management and restoration approaches that adequately consider uncertainty and adaptability are hampered by a continuing focus on production of a few goods or objectives, strong control of forest structure and composition, and most importantly the absence of a global scientific framework and long-term vision. Ecosystem-based approaches represent a step in the right direction, but are limited in their ability to deal with the rapid pace of social, climatic, and environmental changes. We argue here that viewing forest ecosystems as complex adaptive system provides a better alternative for both production- and conservation-oriented forests and forestry. We propose a set of broad principles and changes to increase the adaptive capacity of forests in the face of future uncertainties. These span from expanding the sustained-yield, single-good paradigm to developing policy incentives and interventions that promote self-organization and integrated social-ecological adaptation
    corecore