267 research outputs found

    A Universal Model of Global Civil Unrest

    Get PDF
    Civil unrest is a powerful form of collective human dynamics, which has led to major transitions of societies in modern history. The study of collective human dynamics, including collective aggression, has been the focus of much discussion in the context of modeling and identification of universal patterns of behavior. In contrast, the possibility that civil unrest activities, across countries and over long time periods, are governed by universal mechanisms has not been explored. Here, we analyze records of civil unrest of 170 countries during the period 1919-2008. We demonstrate that the distributions of the number of unrest events per year are robustly reproduced by a nonlinear, spatially extended dynamical model, which reflects the spread of civil disorder between geographic regions connected through social and communication networks. The results also expose the similarity between global social instability and the dynamics of natural hazards and epidemics.Comment: 8 pages, 3 figure

    Understanding Design Patterns Density with Aspects: A Case Study in JHotDraw using AspectJ

    Get PDF
    International audienceDesign patterns offer solutions to common engineering prob- lems in programs [1]. In particular, they shape the evolution of program elements. However, their implementations tend to vanish in the code: thus it is hard to spot them and to understand their impact. The prob- lem becomes even more difficult with a "high density of pattern": then the program becomes easy to evolve in the direction allowed by patterns but hard to change [2]. Aspect languages offer new means to modular- ize elements. Implementations of object-oriented design patterns with AspectJ have been proposed [3]. We aim at testing the scalability of such solutions in the JHotDraw framework. We first explore the impact of density on pattern implementation. We show how AspectJ helps to reduce this impact. This unveils the principles of aspects and AspectJ to control pattern density

    Exploiting disorder for perfect focusing

    Full text link
    We demonstrate experimentally that disordered scattering can be used to improve, rather than deteriorate, the focusing resolution of a lens. By using wavefront shaping to compensate for scattering, light was focused to a spot as small as one tenth of the diffraction limit of the lens. We show both experimentally and theoretically that it is the scattering medium, rather than the lens, that determines the width of the focus. Despite the disordered propagation of the light, the profile of the focus was always exactly equal to the theoretical best focus that we derived.Comment: 4 pages, 4 figure

    In Vivo Evaluation of Cervical Stiffness Evolution during Induced Ripening Using Shear Wave Elastography, Histology and 2 Photon Excitation Microscopy: Insight from an Animal Model

    Get PDF
    Prematurity affects 11% of the births and is the main cause of infant mortality. On the opposite case, the failure of induction of parturition in the case of delayed spontaneous birth is associated with fetal suffering. Both conditions are associated with precocious and/or delayed cervical ripening. Quantitative and objective information about the temporal evolution of the cervical ripening may provide a complementary method to identify cases at risk of preterm delivery and to assess the likelihood of successful induction of labour. In this study, the cervical stiffness was measured in vivo in pregnant sheep by using Shear Wave Elastography (SWE). This technique assesses the stiffness of tissue through the measurement of shear waves speed (SWS). In the present study, 9 pregnant ewes were used. Cervical ripening was induced at 127 days of pregnancy (term: 145 days) by dexamethasone injection in 5 animals, while 4 animals were used as control. Elastographic images of the cervix were obtained by two independent operators every 4 hours during 24 hours after injection to monitor the cervical maturation induced by the dexamethasone. Based on the measurements of SWS during vaginal ultrasound examination, the stiffness in the second ring of the cervix was quantified over a circular region of interest of 5 mm diameter. SWS was found to decrease significantly in the first 4–8 hours after dexamethasone compared to controls, which was associated with cervical ripening induced by dexamethasone (from 1.779 m/s ± 0.548 m/s, p < 0.0005, to 1.291 m/s ± 0.516 m/s, p < 0.000). Consequently a drop in the cervical elasticity was quantified too (from 9.5 kPa ± 0.9 kPa, p < 0.0005, to 5.0 kPa ± 0.8 kPa, p < 0.000). Moreover, SWE measurements were highly reproducible between both operators at all times. Cervical ripening induced by dexamethasone was confirmed by the significant increase in maternal plasma Prostaglandin E2 (PGE2), as evidenced by the assay of its metabolite PGEM. Histological analyses and two-photon excitation microscopy, combining both Second Harmonic Generation (SHG) and Two-photon Fluorescence microscopy (2PF) contrasts, were used to investigate, at the microscopic scale, the structure of cervical tissue. Results show that both collagen and 2PF-active fibrillar structures could be closely related to the mechanical properties of cervical tissue that are perceptible in elastography. In conclusion, SWE may be a valuable method to objectively quantify the cervical stiffness and as a complementary diagnostic tool for preterm birth and for labour induction success

    What scans we will read: imaging instrumentation trends in clinical oncology

    Get PDF
    Oncological diseases account for a significant portion of the burden on public healthcare systems with associated costs driven primarily by complex and long-lasting therapies. Through the visualization of patient-specific morphology and functional-molecular pathways, cancerous tissue can be detected and characterized non- invasively, so as to provide referring oncologists with essential information to support therapy management decisions. Following the onset of stand-alone anatomical and functional imaging, we witness a push towards integrating molecular image information through various methods, including anato-metabolic imaging (e.g., PET/ CT), advanced MRI, optical or ultrasound imaging. This perspective paper highlights a number of key technological and methodological advances in imaging instrumentation related to anatomical, functional, molecular medicine and hybrid imaging, that is understood as the hardware-based combination of complementary anatomical and molecular imaging. These include novel detector technologies for ionizing radiation used in CT and nuclear medicine imaging, and novel system developments in MRI and optical as well as opto-acoustic imaging. We will also highlight new data processing methods for improved non-invasive tissue characterization. Following a general introduction to the role of imaging in oncology patient management we introduce imaging methods with well-defined clinical applications and potential for clinical translation. For each modality, we report first on the status quo and point to perceived technological and methodological advances in a subsequent status go section. Considering the breadth and dynamics of these developments, this perspective ends with a critical reflection on where the authors, with the majority of them being imaging experts with a background in physics and engineering, believe imaging methods will be in a few years from now. Overall, methodological and technological medical imaging advances are geared towards increased image contrast, the derivation of reproducible quantitative parameters, an increase in volume sensitivity and a reduction in overall examination time. To ensure full translation to the clinic, this progress in technologies and instrumentation is complemented by progress in relevant acquisition and image-processing protocols and improved data analysis. To this end, we should accept diagnostic images as “data”, and – through the wider adoption of advanced analysis, including machine learning approaches and a “big data” concept – move to the next stage of non-invasive tumor phenotyping. The scans we will be reading in 10 years from now will likely be composed of highly diverse multi- dimensional data from multiple sources, which mandate the use of advanced and interactive visualization and analysis platforms powered by Artificial Intelligence (AI) for real-time data handling by cross-specialty clinical experts with a domain knowledge that will need to go beyond that of plain imaging
    corecore