
Understanding Design Patterns Density with Aspects:

A Case Study in JHotDraw using AspectJ

Simon Denier, Pierre Cointe

To cite this version:

Simon Denier, Pierre Cointe. Understanding Design Patterns Density with Aspects: A Case
Study in JHotDraw using AspectJ. Welf Löwe and Mario Südholt. Proceedings of the Inter-
national Workshop on Software Composition (SC’06), Mar 2006, Vienne, Austria. Springer-
Verlag, 4089, pp.243-258, 2006, Lecture Notes in Computer Science. <10.1007/11821946 16>.
<inria-00458193>

HAL Id: inria-00458193

https://hal.inria.fr/inria-00458193

Submitted on 19 Feb 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL Mines Nantes

https://core.ac.uk/display/50617417?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.inria.fr/inria-00458193


Understanding Design Patterns Density

with Aspects

a Case Study in JHotDraw using AspectJ

Simon Denier and Pierre Cointe

OBASCO

École des Mines de Nantes, INRIA, LINA,
4, rue Alfred Kastler, Nantes, France

{sdenier, cointe}@emn.fr

Abstract. Design patterns offer solutions to common engineering prob-
lems in programs [1]. In particular, they shape the evolution of program
elements. However, their implementations tend to vanish in the code:
thus it is hard to spot them and to understand their impact. The prob-
lem becomes even more difficult with a “high density of pattern”: then
the program becomes easy to evolve in the direction allowed by patterns
but hard to change [2]. Aspect languages offer new means to modular-
ize elements. Implementations of object-oriented design patterns with
AspectJ have been proposed [3]. We aim at testing the scalability of
such solutions in the JHotDraw framework. We first explore the impact
of density on pattern implementation. We show how AspectJ helps to
reduce this impact. This unveils the principles of aspects and AspectJ to
control pattern density.

1 Introduction

Design patterns [1] are well-known couples of problem-solution for program engi-
neering. They shape the structure and the interface of their targets, and redefine
some behaviors. Most design patterns aim at decoupling concerns, in particular
to allow separate evolution. However, the shape they impose disallows evolution
in other directions. Also, the programmer must often make a tradeoff between
the impact of the pattern and the properties he wants from it, which results in
distortions from the standard pattern. Then implementations of design patterns
suffer from lack of traceability: some elements tend to be lost and pattern iden-
tity itself is hard to trace back to the model — such that the pattern is said to
“vanish” in the code [4].

The impact of design patterns on implementation, their tendency to shape
evolution, and the difficulty to trace them in the code raise questions when soft-
ware grows in complexity. But the implications of design patterns in complex
software is not well understood. Most prominent work includes the study of rela-
tionships between design patterns, such as [1] (section “Design pattern relation-
ships”) and [5], who proposes a classification of different kind of relationships.



This includes patterns making use of other patterns in their implementation as
well as interactions between two patterns. [2] shows in the context of JUnit that
mature frameworks tend to have a high density of patterns: then they are “easy
to use, but hard to change”. Implementations become so entangled that it is
nearly impossible to think of a pattern alone and that they can lose some of
their flexibility.

Aspect-oriented languages à la AspectJ [6, 7] offer new means to modular-
ize software elements. [3] shows some general aspectizations of the GoF design
patterns [1]. Aspect-oriented languages allow:

– modularization of crosscutting pattern elements;
– better separation between a generic (reusable) part and a specific part;
– language-level detection and visualization tools for interactions;
– pluggability of modules to replace a pattern implementation by another.

Our aim is to test the scalability of such aspectizations of design patterns in
a real application. We experiment with the JHotDraw framework1 as it is a well
documented “design exercise” involving many design patterns.

Our guideline is to look for an incremental and reversible development of
JHotDraw. We start with a basic yet functional framework (called the base there-
after). We then “compose” new modules into the base, incrementally enhancing
the framework, but still with the option to come back to earlier versions. By
doing so we underline design choices which happen through the whole program
when more functions are composed together, but get lost because there is no
mean to trace such choices to the module they support. Such a guideline allows
for a deeper separation of concerns highlighting the development process and
product versions.

Section 2 presents JHotDraw base (internals and design patterns), as well
as the specific example of the “invalidation” concern. Section 3 examines the
invasive impact of two additional concerns on the base, related to the Observer,
Composite and Decorator patterns. Section 4 shows how such impact can
be modularized with AspectJ constructs. We follow with some discussions in
Sect. 5, related work in Sect. 6 and conclude in Sect. 7.

2 An Overview of the JHotDraw framework

2.1 General Architecture

Figure 1 shows main interfaces and relationships involved in the JHotDraw
framework base. It gives a feeling of how a JHotDraw application works and
what can be extended. We now explain the responsibilities and collaborations of
each interface, in particular with regard to framework extension:

– DrawingEditor is the base interface for the application. It maintains a link
to the active DrawingView and to the current tool. Extensions usually define
the GUI, instantiate tools and drawing views.

1 We use JHotDraw 5.3 – available at http://www.jhotdraw.org/



– DrawingView displays one drawing. It holds interactions between the user
and the drawing, as well as graphics with Swing. This is apparent as it is
linked to JPanel, maintains a link to the list of currently selected figures,
and has access to the current tool via the editor. The default implementation
class fulfills all these roles.

– Drawing acts as a container and a uniform layer to manage a set of figures.

– Figure is a central entity to the user. Depending on the application, it can
spawn a large tree of derived figures, such as rectangle, circle, line, or more
structured figures.

– Tool & Handle allow to create or manipulate Figures, either as a whole
(select, move) or focusing on a specific property (size, radius). Tools and
handles are notified of user interactions by the drawing view. They too can
spawn a large tree of derived classes depending on the application.

JFrame

DrawingEditor

JPanel

DrawingView

Tool Drawing

FigureHandle

Link created

’on the fly’

Method call

Specific Legend

JHotDraw

Framework

Interfaces

owner

selection

figures

handles

notification

notificationcurrent tool

Swing

Fig. 1. A synthetic diagram of main interfaces and relationships in JHotDraw.
The inheritance relationship between Swing class JFrame and JHotDraw inter-
face DrawingEditor is a shortcut to the real relationship between JFrame and a
DrawApplication class implementing DrawingEditor. The same is true for JPanel

and DrawingView

2.2 Design Patterns Involvement

We now quickly sketch how design patterns are involved in this general architec-
ture (Fig. 1) and in the underlying implementation. The design patterns exposed



here are documented in the code. The list below shows the importance of pat-
terns to define relationships (Mediator, Observer) as well as to extend the
framework (State, Prototype, Strategy, Adapter, Factory Method).
These patterns build up the JHotDraw framework base.

– Mediator: DrawingEditor is a mediator between the current tool and the
drawing view.

– Strategy: some DrawingView activities such as painting the drawing or grid
constraining are configured with strategies.

– Observer: there are two occurrences of the Observer pattern. One is lying
between figures and the drawing, the other between a drawing and a drawing
view. They basically serve to update the drawing and the view in response
to figure modifications. One such concern is detailed in Sect. 2.3.

– State & Prototype: by switching between tools for the current tool state,
the user changes the behavior he wants to apply in the drawing view context.
Creation tools create figures by copying a prototype figure.

– Adapter & Factory Method: Handler adapts the Figure interface to re-
spond to mouse events. The strong link between a figure and its specific
handles is enforced by a factory method in Figure.

Finally two other patterns are worth mentioning for the purpose of this arti-
cle: an occurrence of the Composite pattern with CompositeFigure, to manipu-
late a group of Figures as a single entity; and an occurrence of the Decorator

pattern with DecoratorFigure, which adds singularities on the target figure
(a border for example).

We now focus on the relationship between DrawingView, Drawing and Figure.
We will survey how design patterns are involved in a particular concern.

2.3 Updating a View: the Invalidation Concern

Whenever a figure changes, the display view has to be updated to reflect those
changes. Following a classic optimization, the area to be redrawn is clipped in
order to speed up refreshing and avoid screen flashing. The process of updating a
view takes two steps: first compute the clipping area and announce it to Swing,
then draw on the graphics context when required by Swing. We call the first
step the invalidation concern: its purpose is to collect damaged area from figures
before sending a repaint request to Swing.

The obvious way to do that is to let figures announce their own clipping area
whenever they change. They should notify their Drawing. The clipping area of
a figure can be simply defined by its bounding rectangle. The clipping area for
the drawing can be defined by the union of all clipping areas notified between
two updates.

Obviously, this concern can be implemented with an Observer occurrence
between Figure and Drawing:

– when a figure is added to a drawing (after its creation for example), the
drawing is registered as an observer for the figure;



– when performing some actions (such as move, change color), the figure no-
tifies its drawing with its bounding box;

– when notified, the drawing adds the bounding box to its clipping area;
– when a figure is deleted, it deregisters the drawing as observer.

Another occurrence of Observer stands between Drawing and DrawingView:

– a drawing registers its drawing view as observer;
– on request the drawing sends its clipping area to the drawing view (which

forwards to Swing); after this point the clipping area can be reset.

Notice how the invalidation concern is itself decomposed in two steps: collecting
the clipping area in Drawing and notifying Swing in DrawingView. This rela-
tionship is summarized in Fig. 1 by the two arrow lines for notification.

3 Study of Pattern Density in JHotDraw

The functionalities described in Sect. 2 define the JHotDraw framework base.
We examine two additions to this base, both related to design patterns and
the invalidation concern. Our goal is to understand how the current framework
(which already contains these additions) differs from the basic one and to exam-
ine the impact in term of implementation. We do this in the spirit of incremental
evolution exposed in the introduction.

3.1 Impact of Composite and Decorator on Invalidation

In the base framework all figures are direct children of the drawing and re-
fer to it for the invalidation process. When the Composite pattern is used
to manipulate a group of figures as a single entity, figures trees can be con-
structed (GroupFigure, Fig. 2). The same is true for the Decorator pattern
with BorderDecorator. Then, since we can have any number of levels between
the drawing and figures, does it affect the invalidation concern?

We first consider GroupFigure. It just merges clipping areas of figures un-
derneath. There is no difference in merging at the group level or at the drawing
level. So invalidation concern is not affected: figures can directly notify the draw-
ing, and GroupFigure is not involved in this Observer pattern. This solution
is labelled A in Fig. 2.

On the contrary, BorderDecorator has the property to redefine the clipping
area of the figure underneath. It enhances the bounding box by the size of its
border. How do we notify the drawing that the clipping area of a figure should
be enhanced? Obviously, solution A does not work since BorderDecorator does
not have a chance to notify its change. We can think of other solutions:

– B: all Figures notify the Drawing each time a command is transmitted;
– C: base Figures notify their direct parent Figure of the change; parent can

change the notification; recursively, the notification traverses the hierarchy
to the Drawing;



Command (dispatched)

B (all figures)

C (path)

D (top most)

A (leaves only)

Notification :

BorderDecoratorGroupFigure

RectangleFigure RectangleFigure RectangleFigure

StandardDrawing

C

B

A

D

Screen

Fig. 2. Figures organized in a tree with Composite and Decorator patterns. In the
upper left corner is a sample of figures display. The object diagram shows different
strategies to deal with notification of invalidation (Sect. 3.1)

– D: in some cases, a parent Figure can directly notify the Drawing.

Solution B is very easy to implement, since all figures classes can inherit
from an abstract class with the link to drawing. However, GroupFigure and
BorderDecorator will trigger notifications every time: they can trigger false no-
tifications since they do not know when their children really change. Notifications
of children are redundant with those of GroupFigure and BorderDecorator yet
it is impractical to inhibit them for temporary time.

Solution C is much more elegant with respect to false notification:
GroupFigure and BorderDecorator will notify only if they receive notifica-
tions from children. This is the time for BorderDecorator to grow the clipping
area. However, this has a cost in term of implementation: GroupFigure and
BorderDecorator are subjects but also observers. This deeply changes the de-
sign as we now have many observers which are linked together in a chain, up
to the drawing. In fact, the design for the invalidation concern is now that of a
Chain of Responsibility pattern [1].

Solution D aims at reducing redundancy. A command such as “move figures”
will automatically trigger changes in target figures. Then a GroupFigure can
trigger the notification at the top level, computing the clipping area, and avoid
notifications in levels underneath. The difficulty is to temporarily disable such
notifications: however, the benefits seem too low for the cost of implementation
in object-oriented languages.

The current JHotDraw framework chooses solution C. Figure 3 gives some de-
tails on the implementation of this solution. It allows to easily redefine for each
Figure observer how it handles notifications (CompositeFigure, lines 17–18)
and, in particular, if it changes them (BorderDecorator, lines 26–29). However,
code complexity is increased. First, we notice that the change is only needed for
the purpose of invalidation with BorderDecorator; but the change also affects



the composite class, due to the chaining solution. Second, as said above, the
impact of the Composite and Decorator patterns is to transform the Ob-

server pattern into a Chain of Responsibility pattern, where each handler
can be seen as an observer of its children.

1 abstract class AbstractFigure implements Figure { // Subject ro l e
private FigureChangeListener obse rver ;

3 ( . . . )
public void moveBy( int dx , int dy){ i n v a l i d a t e ( ) ; ( . . . ) }

5 public void i n v a l i d a t e ( ){
Rectangle r = displayBox ( ) ; // c l i pp ing area

7 obse rver . f i g u r e I n v a l i d a t e d (new FigureChangeEvent ( this , r ) ) ;
}

9 public abstract Rectangle displayBox ( ) ;
}

11 interface FigureChangeListener { // Observer ro l e
public void f i g u r e I n v a l i d a t e d ( FigureChangeEvent e ) ; }

13
class CompositeFigure extends AbstractFigure // Composite ro l e

15 implements FigureChangeListener {
( . . . )

17 public void f i g u r e I n v a l i d a t e d ( FigureChangeEvent e ){
obse rver . f i g u r e I n v a l i d a t e d ( e ) ; } // simple forward

19 }
class GroupFigure extends CompositeFigure { . . . } // Composite extension

21
class DecoratorFigure extends AbstractFigure // Decorator ro l e

23 implements FigureChangeListener { . . . }
class BorderDecorator extends DecoratorFigure {// Decorator extension

25 ( . . . )
public void f i g u r e I n v a l i d a t e d ( FigureChangeEvent e ){

27 Rectangle r = e . ge t Inva l ida t edRec tang l e ( ) ;
r . grow ( fac torx , f a c t o ry ) ; // grow by s i z e of border

29 obse rver . f i g u r e I n v a l i d a t e d (new FigureChangeEvent ( this , r ) ) ; }
}

Fig. 3. Implementation of the Observer pattern impacted by Composite and Decorator patterns
in the current JHotDraw framework. AbstractFigure defines main parts of the Subject role, in-
cluding the reference (line 2) to the Observer role, which is reified by the FigureChangeListener

interface. figureInvalidated (line 12) is the notification method for the invalidation concern. Both
CompositeFigure and DecoratorFigure inherit from AbstractFigure to be subjects and implement
FigureChangeListener to be observers. While the default behavior for figureInvalidated is to for-
ward the event (see CompositeFigure, lines 17–18), BorderDecorator must redefine this method to
take account of its specifity (lines 26–29)

3.2 Evolving to Multiple Drawing Views

The base JHotDraw framework allows to build single-window applications (Fig. 6,
left). There is only one drawing view, which can be managed by a Singleton

pattern. This considerably simplifies the implementation of the Observer pat-
tern between a drawing and its drawing view (Fig. 4).

An extension of JHotDraw allows to build MDI (Multiple Document Inter-
face) applications, allowing multiple drawing views on the same drawing (Fig. 6,
right). The implementation is primarily supported by Swing and internal frames.



class StandardDrawing ( . . . ) implements Drawing {
2 ( . . . )

public void f i g u r e I n v a l i d a t e d ( FigureChangeEvent e ){
4 StandardDrawingView . in s tance ( ) . drawingInva l idated (

new DrawingChangeEvent ( this ,
6 e . g e t Inva l i da t edRec tang l e ( ) ) ) ; }

}

Fig. 4. Simple implementation of the Subject role for the Drawing–DrawingView Observer pattern,
with DrawingView as a Singleton pattern

The extension is almost modular since the base framework for single windows is
not modified – except for the Observer pattern in Fig. 4 which does not allow
multiple observers per drawing. We need to change its implementation according
to Fig. 5. This new implementation works in both singleton and multiple cases,
but we have lost the simple choice of the single window framework.

1 class StandardDrawing ( . . . ) implements Drawing {
( . . . )

3 private Vector<DrawingView> obse rve r s
= new Vector<DrawingView >() ;

5 // when a view i s l inked to a drawing , i t must c a l l t h i s method
// to r e g i s t e r i t s e l f as an observer

7 public void addObserver (DrawingView view ) { . . . }
public void removeObserver (DrawingView view ) { . . . }

9 public void f i g u r e I n v a l i d a t e d ( FigureChangeEvent e ){
for ( DrawingView view : obse rve r s )

11 view . drawingInva l idated (
new DrawingChangeEvent ( this ,

13 e . g e t Inva l i da t edRec tang l e ( ) ) ) ; }
}

Fig. 5. Implementation of the Subject role for the Drawing–DrawingView Observer pattern, modified
to handle multiple DrawingViews. For brevity, the original code has been rewritten using Java 5
generics and the new for loop

3.3 Impact of Pattern Density

Pattern density is a sign that the program design becomes complex, but it does
not mean that patterns themselves are complex: the combination of the Com-

posite, Decorator and Observer patterns which form a Chain of Re-

sponsibility pattern is fairly easy to configure. The Observer pattern is even
simpler with a Singleton pattern. However, our short study shows that such a
combination can have deep impact on implementation.



Fig. 6. Two JHotDraw applications: on the left, single view per drawing; on the right,
multiple views on the same drawing.

4 Pattern Density with Aspects

We now investigate the invalidation concern and the above additions with AspectJ.
We want those additions to be both incremental and reversible. The process is
three-fold and can be summed up as:

1. a “classic” aspectization of Observer patterns for the invalidation concern;
2. configuration of Observer pointcuts to deal with Composite and Deco-

rator patterns;
3. use of modularity and pluggability of aspects to deal with the presence or

absence of the Singleton pattern.

4.1 Aspectization of the Invalidation Concern

We extract the whole invalidation concern from the base classes (resp. inter-
faces): AbstractFigure (resp. Figure), StandardDrawing (resp. Drawing), and
StandardDrawingView (resp. DrawingView). This also includes many call points
to the invalidate method (see AbstractFigure.moveBy in Fig. 3), scattered
through the Figure hierarchy2.

The DrawingDamage aspect (Fig. 7) structurally modifies Drawing classes to
introduce a field called damageArea (line 2) and its control logic. The introduced
addDamage method saves and merges clipping areas in this field (lines 3–5).
The introduced getAndResetDamage method retrieves the clipping area of the
drawing and resets it on purpose of the refresh process (lines 6–8).

2 We count up to forty-one invalidating calls scattered across seventeen classes, with
standard extension such as GroupFigure and BorderDecorator included.



aspect DrawingDamage {
2 private Rectangle Drawing . damageArea ;

void Drawing . addDamage( Rectangle newDamage){
4 i f ( damageArea == null ) damageArea = newDamage ;

else damageArea . add (newDamage ) ; }
6 Rectangle Drawing . getAndResetDamage ( ){

Rectangle r = damageArea ; damageArea = null ;
8 return r ; }

}

Fig. 7. The DrawingDamage aspect, which introduces new field and methods in Drawing subclasses for
the invalidation concern

The GetFigureDamage aspect (Fig. 8) supports observation between a figure
and its drawing. Similar to the reference to a FigureChangeListener (see Fig. 3,
line 2), it introduces in each figure a reference to a drawing (myListeningDrawing,
line 3). Registration is directly performed via pointcut and advice (lines 4–8).
Notification pointcuts extract all previous method calls to invalidate which
where scattered in Figures methods (lines 12–20). The description by pointcuts
is not especially shorter but is localized in the aspect. Finally the invalidate ac-
tion triggered by advice makes use of the damage interface introduced in Drawing

by DrawingDamage (lines 24–27).
The RepairSingleView aspect (Fig. 9) supports the second observer and

the refresh logic (refresh logic was not shown in Sect. 3.2 but follows the same
principle). We consider the singleton case for the drawing view: there is no need
for an observer reference. Pointcuts extract requests for screen update (usually
after an user operation — line 3). The advice notifies the singleton observer
(lines 8–10) which then performs the Swing request (lines 15–16).

The code above shows no more than common benefits we expect from as-
pects: scattered code for notifications, structure and methods relevant to the
invalidation concern are localized in aspects. We should note that the invali-
dation concern and the Observer pattern are typical examples of crosscutting
concerns. We now examine issues from Sects. 3.1 & 3.2 with the help of AspectJ.

4.2 Revisiting Composite and Decorator Interactions

We consider the four strategies envisionned in Sect. 3.1 for invalidation of figures.
Code from Fig. 8 implements solution B by default. Indeed GroupFigure and
BorderDecorator are Figure via their respective superclass. The
GetFigureDamage aspect is oblivious to the dynamic type of Figure instances.

It follows that solution A requires more effort. We must explicitly exclude
CompositeFigure and DecoratorFigure from invalidate pointcuts. For example
the changed pointcut must be rewritten as:

pointcut changed(Figure f):

this(f) && execution(void Figure+.setAttribute(..))

&& !this(CompositeFigure) && !this(DecoratorFigure);



1 aspect GetFigureDamage {
// Reg is t ra t ion of drawing ( observer ) in f i gu r e

3 private Drawing Figure . myListeningDrawing ;
po intcut r e g i s t e rF i g u r e (Drawing d , Figure f ) :

5 execut ion ( Figure CompositeFigure . add ( Figure ) )
&& this (d) && args ( f ) ;

7 a f t e r (Drawing d , Figure f ) : r e g i s t e rF i g u r e (d , f ) {
f . myListeningDrawing = d ; }

9 ( . . . )

11 // Not i f i ca t i on of changes
po intcut wil lChange ( Figure f ) :

13 ( execut ion (void Figure+. displayBox ( Point , Point ) )
| | execut ion (void Figure+.moveBy ( . . ) ) ) && this ( f ) ;

15 be f o r e ( Figure f ) : wi l lChange ( f ){ i n v a l i d a t e ( f ) ; }
a f t e r ( Figure f ) : wi l lChange ( f ){ i n v a l i d a t e ( f ) ; }

17
po intcut changed ( Figure f ) :

19 this ( f ) && execut ion (void Figure+. s e tAt t r i bu t e ( . . ) ) ;
a f t e r ( Figure f ) : changed ( f ){ i n v a l i d a t e ( f ) ; }

21 ( . . . )

23 // Action on no t i f i c a t i on
void i n v a l i d a t e ( Figure f ){

25 i f ( f . myListeningDrawing !=null ){
f . myListeningDrawing . addDamage( f . displayBox ( ) ) ;

27 } ( . . . ) }
}

Fig. 8. Sample from GetFigureDamage aspect, which supports the observer relationship from figures to
their drawing. Pointcuts and advice are used both for registration and notification of the observer.
Pointcut willChange (lines 12–15) stands for actions which invalidate both the old bounding box
(where the figure used to be) and the new bounding box: such actions (move, resize) are advised
before and after their execution (lines 15–16). Pointcut changed (lines 18–19) is used solely for actions
which modify the inner appearance of the figure but not its bounding box: then notification occurs
only after action (line 20)

aspect RepairSingleView {
2 // Not i f i c a t i on s ( reques t for update )

a f t e r ( ) : execut ion (void StandardDrawingView . mousePressed ( . . ) ) {
4 repairDamage ( StandardDrawingView . in s t ance ( ) . drawing ( ) ) ; }

( . . . )
6

// Action on no t i f i c a t i on
8 private void repairDamage (Drawing d){

Rectangle r = d . getAndResetDamage ( ) ;
10 StandardDrawingView . in s t ance ( ) . repairDamage ( r ) ; }

}
12

class StandardDrawingView extends JPanel implements DrawingView {
14 ( . . . )

public void repairDamage ( Rectangle r ) { // Swing reques t
16 i f ( r != null ) { r epa in t ( r . x , r . y , r . width , r . he ight ) ; }}

}

Fig. 9. Sample from RepairSingleView aspect with singleton view configuration



This strategy is initially not interesting and loses even more appeal following
such constraints. The this(Type) predicate can be translated as a dynamic
this instanceof Type test in some cases.

Solution C is interesting: we do not need to transform the Observer pat-
tern into the Chain of Responsibility pattern to get the same effect. The
case involves solely BorderDecorator: we only target figures which have a
BorderDecorator in the chain of parents. If there is to be a change down in the
chain, necessarily the clipping area will be that of the top most decorator. The
process of detecting the top most decorator and passing it down to the triggering
figure can be managed by pointcuts:

pointcut targetaction():

execution(void BorderDecorator.setAttribute(..));

pointcut topmostdecorator(BorderDecorator bd):

this(bd) && targetaction()

&& !cflowbelow(targetaction());

pointcut changed(Figure f):

execution(void Figure+.setAttribute(..))

&& cflowbelow(topmostdecorator(f));

after(Figure f): changed(f) { invalidate(f); }

The topmostdecorator pointcut captures any execution of method
setAttribute which are not in the control flow of another BorderDecorator:
the decorator is then the top most. The changed pointcut will capture any ex-
ecution of setAttribute which are under a BorderDecorator. But, instead
of notifying invalidate with the current figure, it will use the parameter of
topmostdecorator. The clipping area retrieved by invalidate (Fig. 8, line 26)
will be that of the decorator.

The changed pointcut captures all executions below the top most decora-
tor, including other decorators. This is not intended: only “leaves” (such as
RectangleFigure) will trigger real modifications. Currently there is no mean in
the AspectJ language to capture leaves in the control flow. An extension to the
language is proposed in [8]. We could also use !this(DecoratorFigure) such
as in solution A.

Solution D is more simple. We do not want all figures to trigger notifications,
when we are sure that they will change. We simply trigger notifications for top
most calls. For example move command can be notified at the top most level, by
a figure, a composite or a decorator. The willChange pointcut can be rewritten:

pointcut action(): execution(void Figure+.moveBy(..));

pointcut willChange(Figure f):

this(f) && action() && !cflowbelow( action() );

Preliminary conclusion shows that the AspectJ pointcut language is expres-
sive enough to implement the four notification strategies. Contrary to the object
solution, there is no need to change Figure subclasses, CompositeFigure and
Decoratorfigure. However, there is the hidden cost of using AspectJ dynamic



construct such as cflow. Currently we lack quantitative benchmarks on the per-
formance of cflow with respect to the Chain of Responsibility solution,
although this is not perceptible in the context of JHotDraw.

4.3 Pluggability of Aspects: Revisiting Multiple Views

Same as the observer in Fig. 4, RepairSingleView does not work with multi-
ple views. Yet, we simply build a new RepairMultipleViews aspect (Fig. 10).
Contrary to Fig. 5, StandardDrawing is not changed. The framework user can
choose at weaving time which configuration (singleton or multiple views) he
needs. A drawback is that there is no reuse between RepairSingleView and
RepairMultipleViews, so that some change in base code could impact both
aspects. However, it is possible to share some definitions (such as pointcuts for
notification) using AspectJ abstract aspect and extension mechanism.

1 aspect RepairMult ip leViews {
// (De) r e g i s t r a t i on of drawing views in drawing

3 private List<DrawingView> Drawing . l i s t en i ngV i ews
= new LinkedList<DrawingView >() ;

5 po intcut linkViewToDrawing (DrawingView view , Drawing drawing ) :
execut ion (void DrawingView+. setDrawing (Drawing ) )

7 && this ( view ) && args ( drawing ) ;
b e f o r e (DrawingView v , Drawing d ) : linkViewToDrawing (v , d ){

9 ( . . . )
v . drawing ( ) . l i s t en i ngV i ews . remove (v ) ;

11 d . l i s t en i ngV i ews . add (v ) ; }

13 // Not i f i c a t i on s ( reques t for update )
a f t e r (DrawingView v ) : this ( v )

15 && execut ion (void StandardDrawingView . mousePressed ( . . ) ) {
repairDamage (v . drawing ( ) ) ; }

17 ( . . . )

19 // Action on no t i f i c a t i on
private void repairDamage (Drawing d){

21 Rectangle r = d . getAndResetDamage ( ) ;
for (DrawingView view : d . l i s t en i ngV i ews ) {

23 view . repairDamage ( r ) ; }}
}

Fig. 10. Sample from RepairMultipleViews aspect for multiple views (MDI) configuration. Drawing

manages a list of drawing views which are its observers (lines 3–11). Since a view displays one drawing
at a time, its registration on a new drawing involves its deregistration from the previous drawing
(lines 10–11). Another change from Fig. 9 is the capture of the contextual view during notification
(line 14)

5 Discussions

Before concluding, we present two subjects of discussion inspired by this work.
They are complementary to this study but, to this day, rely much on subjective
opinion.



5.1 Specificity of the AspectJ Solution

The specificity of the cflow-based AspectJ solution in Sect. 4.2 can be compared
to a language where inspection of the execution stack is possible. Of course, a
cflow construct can be easily emulated in such a language. However, the cflow
construct combined with aspects allows to easily “compose” modules and pat-
terns without modifying the base code. The fact that such a modification can
be modularized simply with a stack inspector remains to be evaluated.

Intertype declaration (previously introduction) is another feature of AspectJ
which is frequently used in pattern implementation (see Figs. 7, 8 or 10). This
feature can partially emulate mixin or trait-like reuse [9].

5.2 Avoiding Implementation Overhead in a Field of Patterns

Without a reusable pattern library, programmers need to implement design pat-
terns over and over: this leads to “implementation overhead” [10] when it comes
to patterns with heavy, repetitive elements. When pattern density rises and the
same pattern is being used over the same classes, there is a natural tendency
in object-oriented languages to fuse concerns together in order to reuse pattern
implementation and reduce the overhead. Thus reusability is enhanced at the
depends of separation of concerns. We expose two such cases:

– the Observer pattern in Figure is reused in a “figure connection” concern.
Such connections are transversal to the invalidation concern. Typically ob-
servers in connection concern implement void methods for the invalidation
notification and vice-versa;

– StandardDrawing implements the Composite pattern to manipulate Figure.
In fact, it extends the CompositeFigure to reuse its structure and behav-
ior, redefining some methods to accomodate for its nature of Drawing. This
leads Drawing to copy the interface of CompositeFigure in a brittle relation.
StandardDrawing also inherits from Figure a nonsensical subject role.

6 Related Work

The Observer pattern serves as an exercise of choice for aspect languages fea-
tures. The instantiation model of Caesar [11] follows more closely the object
model of design patterns. Reflex [12] offers a metaphor of metaobjects as ob-
servers of hooksets. Many works, such as [13] and [14], deal with modularity and
reusability of aspects in the context of design patterns: they contain valuable
ideas on the way to configure generic aspects for use.

Few other patterns have been studied. One interesting case is the Memento

pattern, for which different attempts with AspectJ have been made [15]. To date
the sole extensive study of single design patterns implementation with aspects
is in [3]. It also contains some evaluation on “composition transparency” for
those new implementations, that is the property to define multiple occurrences



of the same pattern while keeping them separate. However, it does not explore
the issues of density and composition with other patterns.

[16] revisits the case of pattern density in JUnit [2]. It follows a different
guideline than ours by not aspectizing the pattern but the supported concern.
It remains to be shown whether such solutions can be generalized as design
patterns.

7 Conclusion

Summary of problems we review about pattern implementation includes cross-
cutting of implementation, invasive modification of a pattern by application of
another pattern, and tangling of concerns when reuse occurs to reduce overhead.
One could argue that such problems are not specific to the implementation of
design patterns. However, these are symptoms following the density of design
patterns. These problems must be studied at the level of patterns and software
design to promote their reusability. Software designers should be aware of such
impacts:

– composition of patterns mean you have to reconsider forces so that you select
another pattern, with the same concern (see Sect. 3.1);

– lack of reusable patterns itself could lead to tangling concerns in order to
reduce implementation overhead.

Overall, there is a feeling that the difficulty in a dense field of patterns does not
lie within pattern themselves (which remain what they are) but between them.

We notice AspectJ provides a sum of technologies, some of which (cflow, in-
troduction) are not specific to aspects and exist in other languages. Nonetheless,
this sum allows to cleanly modularize new concerns and compose them back and
forth. It allows to avoid transformations of patterns described above, so that we
were able to retain the basic JHotDraw framework and configure it by selecting
aspects. We believe such an approach is valuable in software engineering to trace
design choices during the development process.

The case of implementation overhead (Sect. 5.2) links to a reusable pattern
library. We have implemented a composition of Composite, Iterator, and
Visitor patterns which remains to be evaluated in the context of JHotDraw
(StandardDrawing and CompositeFigure). The approach is to build reusable
compositions based on the reusable single patterns.

Aspectization of patterns opens a new perspective: traceability is enhanced
and, in particular, we could benefit from interaction detection [17] and visual-
ization tool3. Detection of interactions can lead to automation:

– presence of the Singleton pattern links to a simple implementation of the
Observer pattern;

– automatic configuration of pointcuts with cflow-like construct whenever Com-

posite or Decorator patterns are detected;

3 See AspectJ plugin for Eclipse – http://www.eclipse.org/ajdt/



– automatic registration of the Observer pattern based on registration in the
Composite pattern.

Acknowledgements. We would like to thank the anonymous reviewers for their
comments, which help to improve the quality of this article.

References

1. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison Wesley, Massachusetts (1994)

2. Gamma, E., Beck, K.: JUnit: A Cook’s Tour (2002)
http://junit.sourceforge.net/doc/cookstour/cookstour.htm.

3. Hannemann, J., Kiczales, G.: Design pattern implementation in Java and AspectJ.
In: Proc. of OOPSLA 2002, ACM Press (2002) 161–173

4. Soukup, J.: Implementing patterns. In: Pattern languages of program design. ACM
Press/Addison-Wesley Publishing Co., USA (1995) 395–412

5. Zimmer, W.: Relationships between design patterns. In Coplien, J.O., Shmidt,
D.C., eds.: Pattern Languages of Program Design. Addison-Wesley (1994)

6. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An
overview of AspectJ. In Knudsen, J.L., ed.: Proc. of ECOOP 2001, LNCS 2072,
Springer-Verlag (2001) 327–353

7. Colyer, A., Clement, A., Harley, G., Webster, M.: eclipse AspectJ. the eclipse
series. Addison-Wesley (2005)

8. Douence, R., Teboul, L.: A crosscut language for control-flow. In: Proc. of GPCE
2004, LNCS, Springer-Verlag (2004)

9. Denier, S.: Traits programming with AspectJ. RSTI - L’objet 11(3) (2005) 69–86
10. Bosch, J.: Design patterns as language constructs. Journal of Object-Oriented

Programming 11(2) (1998) 18–32
11. Ostermann, K., Mezini, M.: Conquering aspects with Caesar. In Akşit, M., ed.:

Proc. of AOSD 2003, ACM Press (2003) 90–99
12. Tanter, É., Noyé, J., Caromel, D., Cointe, P.: Partial behavioral reflection: Spatial

and temporal selection of reification. In Crocker, R., Steele, Jr., G.L., eds.: Proc.
of OOPSLA 2003, ACM Press (2003) 27–46

13. Clarke, S., Walker, R.J.: Composition patterns: An approach to designing reusable
aspects. In: Proc. of ICSE 2001. IEEE Computer Society (2001) 5–14

14. Lieberherr, K., Lorenz, D.H., Ovlinger, J.: Aspectual collaborations: Combining
modules and aspects. Computer Journal of the British Computer Society 46(5)
(2003) 542–565

15. Marin, M.: Refactoring JHotDraw’s undo concern to AspectJ. In: Proceedings of
the 1st Workshop on Aspect Reverse Engineering (WARE 2004). (2004)

16. Isberg, W.: Aop pointcut patterns in the JUnit Cook’s Tour (2005)
http://junit.sourceforge.net/doc/cookstour/cookstour.htm.

17. Douence, R., Fradet, P., Südholt, M.: A framework for the detection and resolution
of aspect interactions. In Batory, D., Consel, C., Taha, W., eds.: Proc. of GPCE
2002. LNCS 2487, Springer-Verlag (2002) 173–188


