30 research outputs found

    The polymorphic nature of the human dopamine D4 receptor gene: A comparative analysis of known variants and a novel 27 bp deletion in the promoter region

    Get PDF
    BACKGROUND: The human dopamine D4 receptor (DRD4) is a candidate gene of great interest in molecular studies of human personality and psychiatric disorders. This gene is unique in having an exceptionally high amount of polymorphic sites both in the coding and in the promoter region. RESULTS: We report the identification of a new 27 bp deletion starting 524 bp upstream of the initiation codon (27 bp del) of the dopamine D4 receptor (DRD4) gene, in the close vicinity of the -521C>T SNP. The presence of the 27 bp deletion leads to the misgenotyping of the -616C>G SNP by the Sau96 I RFLP method, thus the genotype determination of the mutation is of additional importance. The frequency of this novel sequence variation is considerably low (allele frequency is = 0.16%), as no homozygotes, and only 3 heterozygote carriers were found in a healthy, unrelated Caucasian sample (N = 955). CONCLUSION: Remarkably, the deleted region contains consensus sequences of binding sites for several known transcription factors, suggesting that the different alleles may affect the transcriptional regulation of the gene. A comparison of methods and results for the allelic variations of the DRD4 gene in various ethnic groups is also discussed, which has a high impact in psychiatric genetic studies

    Polygenic and multifactorial scores for pancreatic ductal adenocarcinoma risk prediction

    Get PDF
    Most cases of pancreatic ductal adenocarcinoma (PDAC) are asymptomatic in early stages, and the disease is typically diagnosed in advanced phases, resulting in very high mortality. Tools to identify individuals at high risk of developing PDAC would be useful to improve chances of early detection

    Tropical calcific pancreatitis and its association with CTRC and SPINK1 (p.N34S) variants.

    No full text
    Contains fulltext : 81078.pdf (publisher's version ) (Closed access)BACKGROUND: Tropical calcific pancreatitis (TCP) is a relatively common form of chronic pancreatitis in parts of Asia and Africa. The SPINK1 variant p.N34S is strongly associated with TCP, but other genetic factors remain to be defined. Chymotrypsinogen C (CTRC) degrades trypsinogen and loss-of-function variants have been found in European patients with chronic pancreatitis. Preliminary data indicate that CTRC might increase the risk for TCP. MATERIALS AND METHODS: We selected 150 Indian TCP patients and 150 Indian controls to perform mutational screening of the complete coding region of CTRC and exon 3 of SPINK1. We performed in-silico analysis and functional studies of novel CTRC variants. RESULTS: We identified eight variants among this sample. Three were synonymous and c.180 C>T was significantly enriched in patients (odds ratio=2.09; 95% confidence interval=1.19-3.67; P=0.03). We identified a novel nonsynonymous CTRC (p.G61R) variant in one of 146 patients (0.7%), but absent from controls. In-silico analysis showed that this variant affected a conserved residue, and functional analysis showed that p.G61R results in a complete loss of CTRC secretion from transiently transfected human embryonic kidney 293T cells. SPINK1 p.N34S was present in 31.8% of patients compared with 4.7% in controls, there was no significant cosegregation with CTRC variants. CONCLUSION: The contribution of CTRC variants to TCP is relatively small, but the identification of novel loss-of-function variants (p.G61R) underscores the importance of the trypsinogen pathway in causing TCP

    Chymotrypsin C (caldecrin) promotes degradation of human cationic trypsin: Identity with Rinderknecht's enzyme Y

    No full text
    Digestive trypsins undergo proteolytic breakdown during their transit in the human alimentary tract, which has been assumed to occur through trypsin-mediated cleavages, termed autolysis. Autolysis was also postulated to play a protective role against pancreatitis by eliminating prematurely activated intrapancreatic trypsin. However, autolysis of human cationic trypsin is very slow in vitro, which is inconsistent with the documented intestinal trypsin degradation or a putative protective role. Here we report that degradation of human cationic trypsin is triggered by chymotrypsin C, which selectively cleaves the Leu81-Glu82 peptide bond within the Ca2+ binding loop. Further degradation and inactivation of cationic trypsin is then achieved through tryptic cleavage of the Arg122-Val123 peptide bond. Consequently, mutation of either Leu81 or Arg122 blocks chymotrypsin C-mediated trypsin degradation. Calcium affords protection against chymotrypsin C-mediated cleavage, with complete stabilization observed at 1 mM concentration. Chymotrypsin C is highly specific in promoting trypsin degradation, because chymotrypsin B1, chymotrypsin B2, elastase 2A, elastase 3A, or elastase 3B are ineffective. Chymotrypsin C also rapidly degrades all three human trypsinogen isoforms and appears identical to enzyme Y, the enigmatic trypsinogen-degrading activity described by Heinrich Rinderknecht in 1988. Taken together with previous observations, the results identify chymotrypsin C as a key regulator of activation and degradation of cationic trypsin. Thus, in the high Ca2+ environment of the duodenum, chymotrypsin C facilitates trypsinogen activation, whereas in the lower intestines, chymotrypsin C promotes trypsin degradation as a function of decreasing luminal Ca2+ concentrations

    Chymotrypsin C (CTRC) variants that diminish activity or secretion are associated with chronic pancreatitis.

    No full text
    Contains fulltext : 69611.pdf (publisher's version ) (Closed access)Chronic pancreatitis is a persistent inflammatory disease of the pancreas, in which the digestive protease trypsin has a fundamental pathogenetic role. Here we have analyzed the gene encoding the trypsin-degrading enzyme chymotrypsin C (CTRC) in German subjects with idiopathic or hereditary chronic pancreatitis. Two alterations in this gene, p.R254W and p.K247_R254del, were significantly overrepresented in the pancreatitis group, being present in 30 of 901 (3.3%) affected individuals but only 21 of 2,804 (0.7%) controls (odds ratio (OR) = 4.6; confidence interval (CI) = 2.6-8.0; P = 1.3 x 10(-7)). A replication study identified these two variants in 10 of 348 (2.9%) individuals with alcoholic chronic pancreatitis but only 3 of 432 (0.7%) subjects with alcoholic liver disease (OR = 4.2; CI = 1.2-15.5; P = 0.02). CTRC variants were also found in 10 of 71 (14.1%) Indian subjects with tropical pancreatitis but only 1 of 84 (1.2%) healthy controls (OR = 13.6; CI = 1.7-109.2; P = 0.0028). Functional analysis of the CTRC variants showed impaired activity and/or reduced secretion. The results indicate that loss-of-function alterations in CTRC predispose to pancreatitis by diminishing its protective trypsin-degrading activity
    corecore