438 research outputs found
Disordered cold regulated 15 proteins protect chloroplast membranes during freezing through binding and folding, but do not stabilize chloroplast enzymes in-vivo
Freezing can severely damage plants, limiting geographical distribution of natural populations and leading to major agronomical losses. Plants native to cold climates acquire increased freezing tolerance during exposure to low nonfreezing temperatures in a process termed cold acclimation. This involves many adaptative responses, including global changes in metabolite content and gene expression, and the accumulation of cold-regulated (COR) proteins, whose functions are largely unknown. Here we report that the chloroplast proteins COR15A and COR15B are necessary for full cold acclimation in Arabidopsis (Arabidopsis thaliana). They protect cell membranes, as indicated by electrolyte leakage and chlorophyll fluorescence measurements. Recombinant COR15 proteins stabilize lactate dehydrogenase during freezing in vitro. However, a transgenic approach shows that they have no influence on the stability of selected plastidic enzymes in vivo, although cold acclimation results in increased enzyme stability. This indicates that enzymes are stabilized by other mechanisms. Recombinant COR15 proteins are disordered in water, but fold into amphipathic a-helices at high osmolyte concentrations in the presence of membranes, a condition mimicking molecular crowding induced by dehydration during freezing. X-ray scattering experiments indicate protein-membrane interactions specifically under such crowding conditions. The COR15-membrane interactions lead to liposome stabilization during freezing. Collectively, our data demonstrate the requirement for COR15 accumulation for full cold acclimation of Arabidopsis. The function of these intrinsically disordered proteins is the stabilization of chloroplast membranes during freezing through a folding and binding mechanism, but not the stabilization of chloroplastic enzymes. This indicates a high functional specificity of these disordered plant proteins
Direct observation of the influence of the As-Fe-As angle on the Tc of superconducting SmFeAsOF
The electrical resistivity, crystalline structure and electronic properties
calculated from the experimentally measured atomic positions of the compound
SmFeAsOF have been studied up to pressures ~20GPa. The
correlation between the pressure dependence of the superconducting transition
temperature (Tc) and crystallographic parameters on the same sample shows
clearly that a regular FeAs tetrahedron maximizes Tc, through
optimization of carrier transfer to the FeAs planes as indicated by the
evolution of the electronic band structures.Comment: 15pages, 4 figure
Overexpression of Plastid Transketolase in Tobacco Results in a Thiamine Auxotrophic Phenotype
To investigate the effect of increased plastid transketolase on photosynthetic capacity and growth, tobacco (Nicotiana tabacum) plants with increased levels of transketolase protein were produced. This was achieved using a cassette composed of a full-length Arabidopsis thaliana transketolase cDNA under the control of the cauliflower mosaic virus 35S promoter. The results revealed a major and unexpected effect of plastid transketolase overexpression as the transgenic tobacco plants exhibited a slow-growth phenotype and chlorotic phenotype. These phenotypes were complemented by germinating the seeds of transketolase-overexpressing lines in media containing either thiamine pyrophosphate or thiamine. Thiamine levels in the seeds and cotyledons were lower in transketolase-overexpressing lines than in wild-type plants. When transketolase-overexpressing plants were supplemented with thiamine or thiamine pyrophosphate throughout the life cycle, they grew normally and the seed produced from these plants generated plants that did not have a growth or chlorotic phenotype. Our results reveal the crucial importance of the level of transketolase activity to provide the precursor for synthesis of intermediates and to enable plants to produce thiamine and thiamine pyrophosphate for growth and development. The mechanism determining transketolase protein levels remains to be elucidated, but the data presented provide evidence that this may contribute to the complex regulatory mechanisms maintaining thiamine homeostasis in plants
Heat Transport and the Nature of the Order Parameter in Superconducting
Recent thermal conductivity data on the heavy fermion superconductor
have been interpreted as offering support for an model of the order
parameter as opposed to an model. In this paper, we analyze this issue
from a theoretical standpoint including the detailed effects of Fermi surface
and gap anisotropy. Our conclusion is that although current data put strong
constraints on the gap anisotropy, they cannot definitively distinguish between
these two models. Measurements on samples of varying quality could be decisive
in this regard, however.Comment: 8 pages, revtex, 15 uunencoded postscript figure
On the thermoelectricity of correlated electrons in the zero-temperature limit
The Seebeck coefficient of a metal is expected to display a linear
temperature-dependence in the zero-temperature limit. To attain this regime, it
is often necessary to cool the system well below 1K. We put under scrutiny the
magnitude of this term in different families of strongly-interacting electronic
systems. For a wide range of compounds (including heavy-fermion, organic and
various oxide families) a remarkable correlation between this term and the
electronic specific heat is found. We argue that a dimensionless ratio relating
these two signatures of mass renormalisation contains interesting information
about the ground state of each system. The absolute value of this ratio remains
close to unity in a wide range of strongly-correlated electron systems.Comment: 15 pages, including two figure
High temperature superconductivity (Tc onset at 34K) in the high pressure orthorhombic phase of FeSe
We have studied the structural and superconducting properties of tetragonal
FeSe under pressures up to 26GPa using synchrotron radiation and diamond anvil
cells. The bulk modulus of the tetragonal phase is 28.5(3)GPa, much smaller
than the rest of Fe based superconductors. At 12GPa we observe a phase
transition from the tetragonal to an orthorhombic symmetry. The high pressure
orthorhombic phase has a higher Tc reaching 34K at 22GPa.Comment: 15 pages, 4 figure
Anomalous magnetic field dependence of the thermodynamic transition line in the isotropic superconductor (K,Ba)Bi03
Thermodynamic (specific heat, reversible magnetization, tunneling
spectroscopy) and transport measurements have been performed on high quality
(K,Ba)BiO single crystals. The temperature dependence of the magnetic field
corresponding to the onset of the specific heat anomaly presents a
clear positive curvature. is significantly smaller than the field
for which the superconducting gap vanishes but is closely related to
the irreversibility line deduced from transport data. Moreover, the temperature
dependence of the reversible magnetization present a strong deviation from the
Ginzburg--Landau theory emphasazing the peculiar nature of the superconducting
transition in this material.Comment: 4 pages, 4 figures, 28 reference
Antiferromagnetic Domains and Superconductivity in UPt3
We explore the response of an unconventional superconductor to spatially
inhomogeneous antiferromagnetism (SIAFM). Symmetry allows the superconducting
order parameter in the E-representation models for UPt3 to couple directly to
the AFM order parameter. The Ginzburg-Landau equations for coupled
superconductivity and SIAFM are solved numerically for two possible SIAFM
configurations: (I) abutting antiferromagnetic domains of uniform size, and
(II) quenched random disorder of `nanodomains' in a uniform AFM background. We
discuss the contributions to the free energy, specific heat, and order
parameter for these models. Neither model provides a satisfactory account of
experiment, but results from the two models differ significantly. Our results
demonstrate that the response of an E_{2u} superconductor to SIAFM is strongly
dependent on the spatial dependence of AFM order; no conclusion can be drawn
regarding the compatibility of E_{2u} superconductivity with UPt3 that is
independent of assumptions on the spatial dependence of AFMComment: 12 pages, 13 figures, to appear in Phys. Rev.
A pivotal role for starch in the reconfiguration of 14C-partitioning and allocation in Arabidopsis thaliana under short-term abiotic stress.
Plant carbon status is optimized for normal growth but is affected by abiotic stress. Here, we used 14C-labeling to provide the first holistic picture of carbon use changes during short-term osmotic, salinity, and cold stress in Arabidopsis thaliana. This could inform on the early mechanisms plants use to survive adverse environment, which is important for efficient agricultural production. We found that carbon allocation from source to sinks, and partitioning into major metabolite pools in the source leaf, sink leaves and roots showed both conserved and divergent responses to the stresses examined. Carbohydrates changed under all abiotic stresses applied; plants re-partitioned 14C to maintain sugar levels under stress, primarily by reducing 14C into the storage compounds in the source leaf, and decreasing 14C into the pools used for growth processes in the roots. Salinity and cold increased 14C-flux into protein, but as the stress progressed, protein degradation increased to produce amino acids, presumably for osmoprotection. Our work also emphasized that stress regulated the carbon channeled into starch, and its metabolic turnover. These stress-induced changes in starch metabolism and sugar export in the source were partly accompanied by transcriptional alteration in the T6P/SnRK1 regulatory pathway that are normally activated by carbon starvation
- …
