267 research outputs found

    The Requisite Electronic Structure Theory To Describe Photoexcited Nonadiabatic Dynamics: Nonadiabatic Derivative Couplings and Diabatic Electronic Couplings

    Get PDF
    Conspectus Electronically photoexcited dynamics are complicated because there are so many different relaxation pathways: fluorescence, phosphorescence, radiationless decay, electon transfer, etc. In practice, to model photoexcited systems is a very difficult enterprise, requiring accurate and very efficient tools in both electronic structure theory and nonadiabatic chemical dynamics. Moreover, these theoretical tools are not traditional tools. On the one hand, the electronic structure tools involve couplings between electonic states (rather than typical single state energies and gradients). On the other hand, the dynamics tools involve propagating nuclei on multiple potential energy surfaces (rather than the usual ground state dynamics). In this Account, we review recent developments in electronic structure theory as directly applicable for modeling photoexcited systems. In particular, we focus on how one may evaluate the couplings between two different electronic states. These couplings come in two flavors. If we order states energetically, the resulting adiabatic states are coupled via derivative couplings. Derivative couplings capture how electronic wave functions change as a function of nuclear geometry and can usually be calculated with straightforward tools from analytic gradient theory. One nuance arises, however, in the context of time-dependent density functional theory (TD-DFT): how do we evaluate derivative couplings between TD-DFT excited states (which are tricky, because no wave function is available)? This conundrum was recently solved, and we review the solution below. We also discuss the solution to a second, pesky problem of origin dependence, whereby the derivative couplings do not (strictly) satisfy translation variance, which can lead to a lack of momentum conservation. Apart from adiabatic states, if we order states according to their electronic character, the resulting diabatic states are coupled via electronic or diabatic couplings. The couplings between diabatic states |ΞA⟩ and |ΞB⟩ are just the simple matrix elements, ⟨ΞA|H|ΞB⟩. A difficulty arises, however, because constructing exactly diabatic states is formally impossible and constructing quasi-diabatic states is not unique. To that end, we review recent advances in localized diabatization, which is one approach for generating adiabatic-to-diabatic (ATD) transformations. We also highlight outstanding questions in the arena of diabatization, especially how to generate multiple globally stable diabatic surfaces

    Sound archaeology: terminology, Palaeolithic cave art and the soundscape

    Get PDF
    This article is focused on the ways that terminology describing the study of music and sound within archaeology has changed over time, and how this reflects developing methodologies, exploring the expectations and issues raised by the use of differing kinds of language to define and describe such work. It begins with a discussion of music archaeology, addressing the problems of using the term ‘music’ in an archaeological context. It continues with an examination of archaeoacoustics and acoustics, and an emphasis on sound rather than music. This leads on to a study of sound archaeology and soundscapes, pointing out that it is important to consider the complete acoustic ecology of an archaeological site, in order to identify its affordances, those possibilities offered by invariant acoustic properties. Using a case study from northern Spain, the paper suggests that all of these methodological approaches have merit, and that a project benefits from their integration

    Identifying a Typology of High Schools Based on Their Orientation Toward STEM: A Latent Class Analysis of HSLS:09

    Get PDF
    The purpose of this study is to investigate the extent that there is a typology of high schools based on their orientation toward STEM, as well as the extent to which school-level demographic variables and student high school outcomes are associated with subgroup membership in the typology, by analyzing data from a large nationally representative sample of high schools (n=940) from the High School Longitudinal Study of 2009 (HSLS:09) using latent class analysis (LCA). We used a three-step LCA approach to identify significantly different subgroups of STEM-oriented high schools, what covariates predict subgroup membership, and how subgroup membership predicts observed distal outcomes. We find that there are four significantly different subgroups of STEM-oriented high schools based on their principal’s perceptions: Abundant (12.3%), Support (23.3%), Bounded (10.1%), and Comprehensive (54.3%). In addition, we find that these subgroups are associated with school demographics, such as the percent of students eligible for free and reduced-price lunch, school locale, and control (public or private). Subgroup membership is also associated with student outcomes, such as postsecondary program enrollment and intent to pursue a STEM degree. Keywords: STEM Education, High Schools, Multivariate Analysi

    A density functional theory based analysis of photoinduced electron transfer in a triazacryptand based K+ sensor

    Get PDF
    The electronic structure and photoinduced electron transfer processes in a K+ fluorescent sensor that comprises a 4-amino-naphthalimide derived fluorophore with a triazacryptand lig- and is investigated using density functional theory (DFT) and time-dependent density functional theory (TDDFT) in order to rationalise the function of the sensor. The absorption and emission energies of the intense electronic excitation localised on the fluorophore are accurately described using a ∆SCF Kohn-Sham DFT approach, which gives excitation energies closer to experiment than TDDFT. Analysis of the molecular orbital diagram arising from DFT calculations for the isolated molecule or with implicit solvent cannot account for the function of the sensor and it is necessary to consider the relative energies of the electronic states formed from the local excitation on the fluorophore and the lowest fluorophore→chelator charge transfer state. The inclusion of solvent in these calculations is critical since the strong interaction of the charge transfer state with the solvent lowers it energy below the local fluorophore excited state making a reductive photoinduced electron transfer possible in the absence of K+, while no such process is possible when the sensor is bound to K+. The rate of electron transfer is quantified using Marcus theory, which gives a rate of electron transfer of k_ET=5.98 x 10^6 s−1

    Insight dimensions and cognitive function in psychosis: a longitudinal study

    Get PDF
    BACKGROUND: It has been reported that lack of insight is significantly associated with cognitive disturbance in schizophrenia. This study examines the longitudinal relationships between insight dimensions and cognitive performance in psychosis. METHODS: Participants were 75 consecutively admitted inpatients with schizophrenia, affective disorder with psychotic symptoms or schizoaffective disorder. Assessments were conducted at two time points during the study: at the time of hospital discharge after an acute psychotic episode and at a follow-up time that occurred more than 6 months after discharge. A multidimensional approach of insight was chosen and three instruments for its assessment were used: the Scale to Assess Unawareness of Mental Disorder (SUMD), three items concerning insight on the Assessment and Documentation in Psychopathology (AMDP) system and the Insight and Treatment Attitudes Questionnaire. The neuropsychological battery included a wide range of tests that assessed global cognitive function, attention, memory, and executive functions. RESULTS: After conducting adequate statistical correction to avoid Type I bias, insight dimensions and cognitive performance were not found to be significantly associated at cross-sectional and longitudinal assessments. In addition, baseline cognitive performance did not explain changes in insight dimensions at follow-up. Similar results were found in the subset of patients with schizophrenia (n = 37). The possibility of a Type II error might have increased due to sample attrition at follow-up. CONCLUSION: These results suggest that lack of insight dimensions and cognitive functioning may be unrelated phenomena in psychosis

    Software for the frontiers of quantum chemistry:An overview of developments in the Q-Chem 5 package

    Get PDF
    This article summarizes technical advances contained in the fifth major release of the Q-Chem quantum chemistry program package, covering developments since 2015. A comprehensive library of exchange–correlation functionals, along with a suite of correlated many-body methods, continues to be a hallmark of the Q-Chem software. The many-body methods include novel variants of both coupled-cluster and configuration-interaction approaches along with methods based on the algebraic diagrammatic construction and variational reduced density-matrix methods. Methods highlighted in Q-Chem 5 include a suite of tools for modeling core-level spectroscopy, methods for describing metastable resonances, methods for computing vibronic spectra, the nuclear–electronic orbital method, and several different energy decomposition analysis techniques. High-performance capabilities including multithreaded parallelism and support for calculations on graphics processing units are described. Q-Chem boasts a community of well over 100 active academic developers, and the continuing evolution of the software is supported by an “open teamware” model and an increasingly modular design

    Systematic Fragmentation Method and the Effective Fragment Potential: An Efficient Method for Capturing Molecular Energies

    Full text link

    Gender and creativity: An overview of psychological and neuroscientific literature

    Get PDF
    The topic of gender differences in creativity is one that generates substantial scientific and public interest, but also courts considerable controversy. Owing to the heterogeneous nature of the findings associated with this line of research, the general picture often appears puzzling or obscure. This article presents a selective overview of psychological and neuroscientific literature that has a relevant bearing on the theme of gender and creativity. Topics that are explored include the definition and methods of assessing creativity, a summary of behavioral investigations on gender in relation to creativity, postulations that have been put forward to understand gender differences in creative achievement, gender-based differences in the structure and function of the brain, gender-related differences in behavioral performance on tasks of normative cognition, and neuroscientific studies of gender and creativity. The article ends with a detailed discussion of the idea that differences between men and women in creative cognition are best explained with reference to the gender-dependent adopted strategies or cognitive style when faced with generative tasks

    Research On and Activities For Mathematically Gifted Students

    Get PDF
    This Topical Survey offers a brief overview of the current state of research on and activities for mathematically gifted students around the world. This is of interest to a broad readership, including educational researchers, research mathematicians, mathematics teachers, teacher educators, curriculum designers, doctoral students, and other stakeholders. It first discusses research concerning the nature of mathematical giftedness, including theoretical frameworks and methodologies that are helpful in identifying and/or creating mathematically gifted students, which is described in this section. It also focuses on research on and the development of mathematical talent and innovation in students, including connections between cognitive, social and affective aspects of mathematically gifted students. Exemplary teaching and learning practices, curricula and a variety of programs that contribute to the development of mathematical talent, gifts, and passion are described as well as the pedagogy and mathematics content suitable for educating pre-service and in-service teachers of mathematically gifted students. The final section provides a brief summary of the paper along with suggestions for the research, activities, and resources that should be available to support mathematically gifted students and their teachers, parents, and other stakeholders
    corecore