128 research outputs found

    Proteomic analysis of the excretory-secretory products from larval stages of Ascaris suum reveals high abundance of glycosyl hydrolases

    Get PDF
    Background: Ascaris lumbricoides and Ascaris suum are socioeconomically important and widespread parasites of humans and pigs, respectively. The excretory-secretory (ES) molecules produced and presented at the parasite-host interface during the different phases of tissue invasion and migration are likely to play critical roles in the induction and development of protective immune and other host responses. Methodology/Principal Findings: The aim of this study was to identify the ES proteins of the different larval stages (L3-egg, L3-lung and L4) by LC-MS/MS. In total, 106 different proteins were identified, 20 in L3-egg, 45 in L3-lung stage and 58 in L4. Although most of the proteins identified were stage-specific, 15 were identified in the ES products of at least two stages. Two proteins, i.e. a 14-3-3-like protein and a serpin-like protein, were present in the ES products from the three different larval stages investigated. Interestingly, a comparison of ES products from L4 with those of L3-egg and L3-lung showed an abundance of metabolic enzymes, particularly glycosyl hydrolases. Further study indicated that most of these glycolytic enzymes were transcriptionally upregulated from L4 onwards, with a peak in the adult stage, particularly in intestinal tissue. This was also confirmed by enzymatic assays, showing the highest glycosidase activity in protein extracts from adult worms gut. Conclusions/Significance: The present proteomic analysis provides important information on the host-parasite interaction and the molecular of migratory stages of A. suum. In particularly, the high transcriptionally upregulated of glycosyl hydrolases from L4 onwards reveals indicate that the degradation of complex carbohydrates forms an essential part of the energy metabolism of this parasite once it establishes in the small intestine

    Scaling up temperature cycling-induced deracemization by suppressing nonstereoselective processes

    Get PDF
    The scale-up of Temperature Cycling-Induced Deracemization (TCID) of sodium bromate is feasible provided that two nonstereoselective processes are suppressed. Both nonstereoselective processes occur as a result of insufficient crystal breakage or attrition. In the absence of crystal breakage or attrition during the temperature cycles, large crystals emerge and the resulting small total crystal surface area is unable to sufficiently consume the supersaturation during cooling, resulting in nonstereoselective nucleation. This nonstereoselective process can be avoided by applying small temperature cycles involving small dissolving solid fractions. However, this leads to a slow deracemization rate. In addition, crystals undergo nonstereoselective agglomeration, which leads to the formation of large racemic agglomerates constructed of both chiral forms. To counteract their formation, secondary nucleation through crystal breakage was found to be a key requirement. At a large scale, a homogenizer was used to induce crystal breakage which, in combination with temperature cycles, led to the removal of racemic agglomerates as well as a significant increase in the deracemization rate. Overusing the homogenizer, however, caused the enantiomeric excess increase to stop. Our experiments show the importance of secondary nucleation in TCID of sodium bromate. However, secondary nucleation is currently not incorporated in the TCID process models. In the presence of a large amount of crystals which facilitates a sufficiently large crystal surface area at the highest temperature and careful use of the homogenizer, TCID leads to complete deracemization in volumes up to 1 L, demonstrating the potential to extend TCID to industrial applications

    One-pot synthesis, crystallization and deracemization of isoindolinones from achiral reactants

    Get PDF
    The synthesis, crystallization, and complete solid-state deracemization of isoindolinones was realized in one pot simply by grinding achiral reaction components in a suitable solvent with an achiral catalyst. Previously, this concept was applied to a reversible reaction, but herein we showed that it could also be used in combination with reactions in which product formation is irreversible. A controlled final configuration of the product was obtained by using small amounts of chiral additives or seed crystals of the product

    Combined multidisciplinary in/outpatient rehabilitation delays definite nursing home admission in advanced Parkinson’s disease patients

    Get PDF
    IntroductionAdvanced Parkinson’s disease (aPD) patients have a high risk on definite nursing home admission. We analyzed the effectiveness of an in-and outpatient multidisciplinary rehabilitation, focusing on activities of daily living (ADL) and delaying definite nursing home admission.MethodsThis study included 24 aPD patients, who received a 6-week inpatient multidisciplinary rehabilitation program, including optimization of pharmacotherapy, which was followed by an individualized outpatient support program during 2 years (intervention group). A non-randomized matched control group (n = 19), received care as usual. Primary endpoints consisted of the Amsterdam Linear Disability Scale (ALDS) and percentage of patients being able to live independently at home after 2 years. Secondary endpoints included changes in medication (LEDD), motor performance (SCOPA-SPES), cognition (SCOPA-COG), hallucinations (NPI) and depression (BDI).ResultsOverall, 83% of patients were able to return home after the 6-week inpatient intervention, and 65% still lived at home at 2 years follow-up. Median ALDS scores after 2 years in the intervention group were significantly better, compared to the control group (p = 0.002). All secondary endpoints had improved significantly vs. baseline directly after the 6-week inpatient rehabilitation, which had disappeared at 2 years follow-up, with the exception of the daily dose of medication, which was significantly higher in the intervention group.ConclusionThis 2-year follow-up study showed that a combined multidisciplinary in/outpatient rehabilitation program for aPD patients, was able to stabilize ADL functions, and finally delayed definite nursing home admissions in 65% of treated patients.Trial registrationfilenumber M10.091051; ABR code NL32699.042.10

    Microsphere-Based Rapamycin Delivery, Systemic Versus Local Administration in a Rat Model of Renal Ischemia/Reperfusion Injury

    Get PDF
    The increasing prevalence and treatment costs of kidney diseases call for innovative therapeutic strategies that prevent disease progression at an early stage. We studied a novel method of subcapsular injection of monodisperse microspheres, to use as a local delivery system of drugs to the kidney. We generated placebo- and rapamycin monodisperse microspheres to investigate subcapsular delivery of drugs. Using a rat model of acute kidney injury, subcapsular injection of placebo and rapamycin monodisperse microspheres (monospheres) was compared to subcutaneous injection, mimicking systemic administration. We did not find any adverse effects related to the delivery method. Irrespective of the injection site, a similar low dose of rapamycin was present in the circulation. However, only local intrarenal delivery of rapamycin from monospheres led to decreased macrophage infiltration and a significantly lower amount of myofibroblasts in the kidney, where systemic administration did not. Local delivery of rapamycin did cause a transient increase in the deposition of collagen I, but not of collagen III. We conclude that therapeutic effects can be increased when rapamycin is delivered subcapsularly by monospheres, which, combined with low systemic concentrations, may lead to an effective intrarenal delivery method

    On the effect of secondary nucleation on deracemization through temperature cycles

    Get PDF
    Herein, the pivotal role of secondary nucleation in a crystallization-enhanced deracemization process is reported. During this process, complete and rapid deracemization of chiral conglomerate crystals of an isoindolinone is attained through fast microwave-assisted temperature cycling. A parametric study of the main factors that affect the occurrence of secondary nucleation in this process, namely agitation rate, suspension density, and solute supersaturation, confirms that an enhanced stereoselective secondary nucleation rate maximizes the deracemization rate. Analysis of the system during a single temperature cycle showed that, although stereoselective particle production during the crystallization stage leads to enantiomeric enrichment, undesired kinetic dissolution of smaller particles of the preferred enantiomer occurs during the dissolution step. Therefore, secondary nucleation is crucial for the enhancement of deracemization through temperature cycles and as such should be considered in further design and optimization of this process, as well as in other temperature cycling processes commonly applied in particle engineering

    Lipoxin A4 and interleukin-8 levels in cystic fibrosis sputum after antibiotherapy

    Get PDF
    AbstractAntibiotics are largely prescribed for cystic fibrosis (CF) respiratory exacerbations. Effects of antibiotics on the inflammatory profile of the patients have been shown but remain controversial. Lipoxin A4 (LXA4) is a lipid mediator, reported to play a central role in resolving airway inflammation. The aim of the study was to investigate the consequences of antibiotherapy on LXA4 and IL-8 levels in CF patients' airways.MethodsEighteen CF patients (7 females, median age 20, range 8 to 47 years) consecutively admitted at the CF center of Montpellier for antibiotics during pulmonary exacerbation, were enrolled. Before and after antibiotics, all patients underwent spirometry (FEV1 and FVC), bacterial cultures and cell counts in sputa. IL-8 and LXA4 concentrations were determined in sputum samples by the median of immunometric assays.ResultsAs previously reported, after antibiotics therapy, FEV1 and FVC significantly improved. While neutrophil cell counts and IL-8 levels decreased, the LXA4 levels significantly increased after antibiotics therapy and were inversely correlated with IL-8 levels.In conclusion, we reported a correlation between antibiotics treatments and inflammatory markers in CF sputum. Our data provide evidences for a novel effect of antibiotics increasing the concentration of the anti-inflammatory lipid mediator LXA4

    Титульні сторінки та зміст

    Get PDF
    Kidney injury triggers fibrosis, the final common pathway of chronic kidney disease (CKD). The increase of CKD prevalence worldwide urgently calls for new therapies. Available systemic treatment such as rapamycin are associated with serious side effects. To study the potential of local antifibrotic therapy, we administered rapamycin-loaded microspheres under the kidney capsule of ureter-obstructed rats and assessed the local antifibrotic effects and systemic side effects of rapamycin. After 7 days, microsphere depots were easily identifiable under the kidney capsule. Both systemic and local rapamycin treatment reduced intrarenal mTOR activity, myofibroblast accumulation, expression of fibrotic genes, and T-lymphocyte infiltration. Upon local treatment, inhibition of mTOR activity and reduction of myofibroblast accumulation were limited to the immediate vicinity of the subcapsular pocket, while reduction of T-cell infiltration was widespread. In contrast to systemically administered rapamycin, local treatment did not induce off target effects such as weight loss. Thus subcapsular delivery of rapamycin-loaded microspheres successfully inhibited local fibrotic response in UUO with less systemic effects. Therapeutic effect of released rapamycin was most prominent in close vicinity to the implanted microspheres. (C) 2014 Elsevier Ltd. All rights reserved

    Pharmacokinetics of a sustained release formulation of PDGFβ-receptor directed carrier proteins to target the fibrotic liver

    Get PDF
    Liver fibrogenesis is associated with excessive production of extracellular matrix by myofibroblasts that often leads to cirrhosis and consequently liver dysfunction and death. Novel protein-based antifibrotic drugs show high specificity and efficacy, but their use in the treatment of fibrosis causes a high burden for patients, since repetitive and long-term parenteral administration is required as most proteins and peptides are rapidly cleared from the circulation. Therefore, we developed biodegradable polymeric microspheres for the sustained release of proteinaceous drugs. We encapsulated the drug carrier pPB-HSA, which specifically binds to the PDGF beta R that is highly upregulated on activated myofibroblasts, into microspheres composed of hydrophilic multi-block copolymers composed of poly(L-lactide) and poly ethylene glycol/poly(is an element of-caprolactone), allowing diffusion-controlled release. Firstly, we estimated in mice with acute fibrogenesis induced by a single CCl4 injection the half-life of I-125-labeled pPB-HSA at 40 min and confirmed the preferential accumulation in fibrotic tissue. Subsequently, we determined in the Mdr2-/- mouse model of advanced biliary liver fibrosis how the subcutaneously injected microspheres released pPB-HSA into both plasma and fibrotic liver at 24 h after injection, which was maintained for six days. Although the microspheres still contained protein at day seven, pPB-HSA plasma and liver concentrations were decreased. This reduction was associated with an antibody response against the human albumin-based carrier protein, which was prevented by using a mouse albumin-based equivalent (pPB-MSA). In conclusion, this study shows that our polymeric microspheres are suitable as sustained release formulation for targeted protein constructs such as pPB-HSA. These formulations could be applied for the long-term treatment of chronic diseases such as liver fibrosis
    corecore