405 research outputs found
Symmetries of Electrostatic Interaction between DNA Molecules
We study a model for pair interaction of DNA molecules generated by the
discrete dipole moments of base-pairs and the charges of phosphate groups, and
find noncommutative group of eighth order of symmetries that leave
invariant. We classify the minima using group and employ
numerical methods for finding them. The minima may correspond to several
cholesteric phases, as well as phases formed by cross-like conformations of
molecules at an angle close to , "snowflake phase". The results
depend on the effective charge of the phosphate group which can be modified
by the polycations or the ions of metals. The snowflake phase could exist for
above the threshold . Below there could be several cholesteric
phases. Close to the snowflake phase could change into the cholesteric
one at constant distance between adjacent molecules.Comment: 13 pages, 4 figure
Quantitative principles of cis-translational control by general mRNA sequence features in eukaryotes.
BackgroundGeneral translational cis-elements are present in the mRNAs of all genes and affect the recruitment, assembly, and progress of preinitiation complexes and the ribosome under many physiological states. These elements include mRNA folding, upstream open reading frames, specific nucleotides flanking the initiating AUG codon, protein coding sequence length, and codon usage. The quantitative contributions of these sequence features and how and why they coordinate to control translation rates are not well understood.ResultsHere, we show that these sequence features specify 42-81% of the variance in translation rates in Saccharomyces cerevisiae, Schizosaccharomyces pombe, Arabidopsis thaliana, Mus musculus, and Homo sapiens. We establish that control by RNA secondary structure is chiefly mediated by highly folded 25-60 nucleotide segments within mRNA 5' regions, that changes in tri-nucleotide frequencies between highly and poorly translated 5' regions are correlated between all species, and that control by distinct biochemical processes is extensively correlated as is regulation by a single process acting in different parts of the same mRNA.ConclusionsOur work shows that general features control a much larger fraction of the variance in translation rates than previously realized. We provide a more detailed and accurate understanding of the aspects of RNA structure that directs translation in diverse eukaryotes. In addition, we note that the strongly correlated regulation between and within cis-control features will cause more even densities of translational complexes along each mRNA and therefore more efficient use of the translation machinery by the cell
Adsorption of mono- and multivalent cat- and anions on DNA molecules
Adsorption of monovalent and multivalent cat- and anions on a deoxyribose
nucleic acid (DNA) molecule from a salt solution is investigated by computer
simulation. The ions are modelled as charged hard spheres, the DNA molecule as
a point charge pattern following the double-helical phosphate strands. The
geometrical shape of the DNA molecules is modelled on different levels ranging
from a simple cylindrical shape to structured models which include the major
and minor grooves between the phosphate strands. The densities of the ions
adsorbed on the phosphate strands, in the major and in the minor grooves are
calculated. First, we find that the adsorption pattern on the DNA surface
depends strongly on its geometrical shape: counterions adsorb preferentially
along the phosphate strands for a cylindrical model shape, but in the minor
groove for a geometrically structured model. Second, we find that an addition
of monovalent salt ions results in an increase of the charge density in the
minor groove while the total charge density of ions adsorbed in the major
groove stays unchanged. The adsorbed ion densities are highly structured along
the minor groove while they are almost smeared along the major groove.
Furthermore, for a fixed amount of added salt, the major groove cationic charge
is independent on the counterion valency. For increasing salt concentration the
major groove is neutralized while the total charge adsorbed in the minor groove
is constant. DNA overcharging is detected for multivalent salt. Simulations for
a larger ion radii, which mimic the effect of the ion hydration, indicate an
increased adsorbtion of cations in the major groove.Comment: 34 pages with 14 figure
Depurination of Brome mosaic virus RNA3 inhibits its packaging into virus particles
Packaging of the segmented RNA genome of Brome mosaic virus (BMV) into discrete particles is an essential step in the virus life cycle; however, questions remain regarding the mechanism of RNA packaging and the degree to which the viral coat protein controls the process. In this study, we used a plant-derived glycosidase, Pokeweed antiviral protein, to remove 14 specific bases from BMV RNA3 to examine the effect of depurination on virus assembly. Depurination of A771 within ORF3 and A1006 in the intergenic region inhibited coat protein binding and prevented RNA3 incorporation into particles. The disruption of interaction was not based on sequence identity, as mutation of these two purines to pyrimidines did not decrease coat protein-binding affinity. Rather, we suggest that base removal results in decreased thermodynamic stability of local RNA structures required for packaging, and that this instability is detected by coat protein. These results describe a new level of discrimination by coat protein, whereby it recognizes damage to specific viral RNA elements in the form of base removal and selects against incorporating the RNA into particles
Molecular Dynamics and Quantum Mechanics of RNA: Conformational and Chemical Change We Can Believe In
Structure and dynamics are both critical to RNA’s vital functions in biology. Numerous techniques can elucidate the structural dynamics of RNA, but computational approaches based on experimental data arguably hold the promise of providing the most detail. In this Account, we highlight areas wherein molecular dynamics (MD) and quantum mechanical (QM) techniques are applied to RNA, particularly in relation to complementary experimental studies
Effects of Restrained Sampling Space and Nonplanar Amino Groups on Free-Energy Predictions for RNA with Imino and Sheared Tandem GA Base Pairs Flanked by GC, CG, iGiC or iCiG Base Pairs
Guanine-adenine (GA) base pairs play important roles in determining the structure, dynamics, and stability of RNA. In RNA internal loops, GA base pairs often occur in tandem arrangements and their structure is context and sequence dependent. Calculations reported here test the thermodynamic integration (TI) approach with the amber99 force field by comparing computational predictions of free energy differences with the free energy differences expected on the basis of NMR determined structures of the RNA motifs (5′-GCGGACGC-3′)2, (5′-GCiGGAiCGC-3′)2, (5′-GGCGAGCC-3′)2, and (5′-GGiCGAiGCC-3′)2. Here, iG and iC denote isoguanosine and isocytidine, which have amino and carbonyl groups transposed relative to guanosine and cytidine. The NMR structures show that the GA base pairs adopt either imino (cis Watson−Crick/Watson−Crick A-G) or sheared (trans Hoogsteen/Sugar edge A-G) conformations depending on the identity and orientation of the adjacent base pair. A new mixing function for the TI method is developed that allows alchemical transitions in which atoms can disappear in both the initial and final states. Unrestrained calculations gave ΔG° values 2−4 kcal/mol different from expectations based on NMR data. Restraining the structures with hydrogen bond restraints did not improve the predictions. Agreement with NMR data was improved by 0.7 to 1.5 kcal/mol, however, when structures were restrained with weak positional restraints to sample around the experimentally determined NMR structures. The amber99 force field was modified to partially include pyramidalization effects of the unpaired amino group of guanosine in imino GA base pairs. This provided little or no improvement in comparisons with experiment. The marginal improvement is observed when the structure has potential cross-strand out-of-plane hydrogen bonding with the G amino group. The calculations using positional restraints and a nonplanar amino group reproduce the signs of ΔG° from the experimental results and are, thus, capable of providing useful qualitative insights complementing the NMR experiments. Decomposition of the terms in the calculations reveals that the dominant terms are from electrostatic and interstrand interactions other than hydrogen bonds in the base pairs. The results suggest that a better description of the backbone is key to reproducing the experimental free energy results with computational free energy predictions
A nonlinear dynamic model of DNA with a sequence-dependent stacking term
No simple model exists that accurately describes the melting behavior and breathing dynamics of double-stranded DNA as a function of nucleotide sequence. This is especially true for homogenous and periodic DNA sequences, which exhibit large deviations in melting temperature from predictions made by additive thermodynamic contributions. Currently, no method exists for analysis of the DNA breathing dynamics of repeats and of highly G/C- or A/T-rich regions, even though such sequences are widespread in vertebrate genomes. Here, we extend the nonlinear Peyrard–Bishop–Dauxois (PBD) model of DNA to include a sequence-dependent stacking term, resulting in a model that can accurately describe the melting behavior of homogenous and periodic sequences. We collect melting data for several DNA oligos, and apply Monte Carlo simulations to establish force constants for the 10 dinucleotide steps (CG, CA, GC, AT, AG, AA, AC, TA, GG, TC). The experiments and numerical simulations confirm that the GG/CC dinucleotide stacking is remarkably unstable, compared with the stacking in GC/CG and CG/GC dinucleotide steps. The extended PBD model will facilitate thermodynamic and dynamic simulations of important genomic regions such as CpG islands and disease-related repeats
DNA dynamics play a role as a basal transcription factor in the positioning and regulation of gene transcription initiation
We assess the role of DNA breathing dynamics as a determinant of promoter strength and transcription start site (TSS) location. We compare DNA Langevin dynamic profiles of representative gene promoters, calculated with the extended non-linear PBD model of DNA with experimental data on transcription factor binding and transcriptional activity. Our results demonstrate that DNA dynamic activity at the TSS can be suppressed by mutations that do not affect basal transcription factor binding–DNA contacts. We use this effect to establish the separate contributions of transcription factor binding and DNA dynamics to transcriptional activity. Our results argue against a purely ‘transcription factor-centric’ view of transcription initiation, suggesting that both DNA dynamics and transcription factor binding are necessary conditions for transcription initiation
Benchmarking AMBER Force Fields for RNA: Comparisons to NMR Spectra for Single-Stranded r(GACC) Are Improved by Revised χ Torsions
Energetics of Base Pairs in B-DNA in Solution: An Appraisal of Potential Functions and Dielectric Treatments
- …
