1,441 research outputs found

    Chemistry and Apparent Quality of Surface Water and Ground Water Associated with Coal Basins

    Get PDF
    Personnel of the Arkansas Mining and Mineral Resources Research Institute conducted preliminary investigations on the chemistry and quality of surface and ground water associated with 12 coal-bearing sub-basins in the Arkansas Valley coal field. The coal field is approximately 60 miles long and 33 miles wide but only in 12 areas coal is thick enough and has proper quality to be termed commercial. Both surface and underground sample sites were established in each of the sub-basins with some minor variations in four areas where not all types of sites could be located. Water was collected from 19 surface points and 19 underground points in the established areas. Both field and laboratory analyses were made and elemental contents are reported herein. In the main, the chemistry and water quality suggests that all water is suitable for agricultural and industrial uses. To obtain potable water, treatment must be made to reduce calcium, magnesium, sodium sulfate and iron. The mineral content of the water is due to its contact with coal-bearing zones and, as such, reflects the mineral content of the coal. However, it is recommended that additional studies on the petrography and geochemistry of the coal, overburden and underburden is in order. Also, it is recommended that at least one detailed study be made of one of the coal sub-basins where geologic parameters can be completely established with regard to hydrogeology. This report is an important first step in determining the character and quality of Arkansas coal which must be fully understood to fully utilize this important mineral resource

    Evaluation of Thermal Imaging Technology for Commercial Vehicle Screening

    Get PDF
    Brake and tire violations are common problems identified through commercial vehicle inspections. Identifying and correcting these types of problems before a crash occurs can produce significant safety benefits. Thermal imaging technology can be used by commercial vehicle enforcement to screen vehicles as they approach a weigh station to determine if they may have flat tires and inoperable brakes. The vehicles do not have to be stopped at a weigh station to be screened. Kentucky currently has three stations outfitted with thermal imaging technology. The objectives of this study were to evaluate the benefits of using the thermal imaging cameras to identify brake and tire problems and to develop recommendations for how enforcement personnel can receive the most benefits from this technology. The data presented in this report include: 1) a summary of previous research, 2) evaluations of the technology, 3) on-site data collection at a Kentucky weigh station, 4) an interview with one of Kentucky’s primary users of the technology, and 5) an analysis of Kentucky inspection data, specifically, brake and tire violations and vehicle out-of-service (OOS) rates. A Federal Motor Carrier Safety Administration (FMCSA) evaluation concluded that the OOS rate for vehicles pinpointed via thermal imaging camera systems was 59 percent, whereas the OOS rate for conventional inspection was only 19 percent. Facilities with a thermal imaging system recorded a higher percentage of tire and brake violations per inspection as well as a higher vehicle out-of-service (VOOS) rate than facilities without a thermal imaging camera. However, the effectiveness of thermal imaging technology was significantly influenced by whether law enforcement embraced it as well as by inspectors’ proficiency operating the systems. This study recommends that enforcement staff who can access thermal imaging technology receive periodic training on its operation, then graduate to a practicum that lets them use the technology under expert supervision. Promotional materials that highlight the value of thermal imaging technologies should be distributed to all Kentucky enforcement personnel. In addition, methods and enforcement mechanisms should be identified so that personnel can be held accountable for using the technology

    VistaClara: an expression browser plug-in for Cytoscape

    Get PDF
    Summary: VistaClara is a plug-in for Cytoscape which provides a more flexible means to visualize gene and protein expression within a network context. An extended attribute browser is provided in the form of a graphical and interactive permutation matrix that resembles the heat map displays popular in gene-expression analysis. This extended browser permits a variety of display options and interactions not currently available in Cytoscape

    Elucidation of Directionality for Co-Expressed Genes: Predicting Intra-Operon Termination Sites

    Full text link
    We present a novel framework for inferring regulatory and sequence-level information from gene co-expression networks. The key idea of our methodology is the systematic integration of network inference and network topological analysis approaches for uncovering biological insights. We determine the gene co-expression network of Bacillus subtilis using Affymetrix GeneChip time series data and show how the inferred network topology can be linked to sequence-level information hard-wired in the organism's genome. We propose a systematic way for determining the correlation threshold at which two genes are assessed to be co-expressed by using the clustering coefficient and we expand the scope of the gene co-expression network by proposing the slope ratio metric as a means for incorporating directionality on the edges. We show through specific examples for B. subtilis that by incorporating expression level information in addition to the temporal expression patterns, we can uncover sequence-level biological insights. In particular, we are able to identify a number of cases where (i) the co-expressed genes are part of a single transcriptional unit or operon and (ii) the inferred directionality arises due to the presence of intra-operon transcription termination sites.Comment: 7 pages, 8 figures, accepted in Bioinformatic

    Dynamics of gene expression and the regulatory inference problem

    Full text link
    From the response to external stimuli to cell division and death, the dynamics of living cells is based on the expression of specific genes at specific times. The decision when to express a gene is implemented by the binding and unbinding of transcription factor molecules to regulatory DNA. Here, we construct stochastic models of gene expression dynamics and test them on experimental time-series data of messenger-RNA concentrations. The models are used to infer biophysical parameters of gene transcription, including the statistics of transcription factor-DNA binding and the target genes controlled by a given transcription factor.Comment: revised version to appear in Europhys. Lett., new titl

    Unravelling the Yeast Cell Cycle Using the TriGen Algorithm

    Get PDF
    Analyzing microarray data represents a computational challenge due to the characteristics of these data. Clustering techniques are widely applied to create groups of genes that exhibit a similar behavior under the conditions tested. Biclustering emerges as an improvement of classical clustering since it relaxes the constraints for grouping allowing genes to be evaluated only under a subset of the conditions and not under all of them. However, this technique is not appropriate for the analysis of temporal microarray data in which the genes are evaluated under certain conditions at several time points. In this paper, we present the results of applying the TriGen algorithm, a genetic algorithm that finds triclusters that take into account the experimental conditions and the time points, to the yeast cell cycle problem, where the goal is to identify all genes whose expression levels are regulated by the cell cycle

    Progress toward curing HIV infection with hematopoietic cell transplantation.

    Get PDF
    HIV-1 infection afflicts more than 35 million people worldwide, according to 2014 estimates from the World Health Organization. For those individuals who have access to antiretroviral therapy, these drugs can effectively suppress, but not cure, HIV-1 infection. Indeed, the only documented case for an HIV/AIDS cure was a patient with HIV-1 and acute myeloid leukemia who received allogeneic hematopoietic cell transplantation (HCT) from a graft that carried the HIV-resistant CCR5-∆32/∆32 mutation. Other attempts to establish a cure for HIV/AIDS using HCT in patients with HIV-1 and malignancy have yielded mixed results, as encouraging evidence for virus eradication in a few cases has been offset by poor clinical outcomes due to the underlying cancer or other complications. Such clinical strategies have relied on HIV-resistant hematopoietic stem and progenitor cells that harbor the natural CCR5-∆32/∆32 mutation or that have been genetically modified for HIV-resistance. Nevertheless, HCT with HIV-resistant cord blood remains a promising option, particularly with inventories of CCR5-∆32/∆32 units or with genetically modified, human leukocyte antigen-matched cord blood
    corecore