467 research outputs found
Deposit formation in hydrocarbon rocket fuels
An experimental program was conducted to study deposit formation in hydrocarbon fuels under flow conditions that exist in high-pressure, rocket engine cooling systems. A high pressure fuel coking test apparatus was designed and developed and was used to evaluate thermal decomposition (coking) limits and carbon deposition rates in heated copper tubes for two hydrocarbon rocket fuels, RP-1 and commercial-grade propane. Tests were also conducted using JP-7 and chemically-pure propane as being representative of more refined cuts of the baseline fuels. A parametric evaluation of fuel thermal stability was performed at pressures of 136 atm to 340 atm, bulk fuel velocities in the range 6 to 30 m/sec, and tube wall temperatures in the range 422 to 811 K. Results indicated that substantial deposit formation occurs with RP-1 fuel at wall temperatures between 600 and 800 K, with peak deposit formation occurring near 700 K. No improvements were obtained when deoxygenated JP-7 fuel was substituted for RP-1. The carbon deposition rates for the propane fuels were generally higher than those obtained for either of the kerosene fuels at any given wall temperature. There appeared to be little difference between commercial-grade and chemically-pure propane with regard to type and quantity of deposit. Results of tests conducted with RP-1 indicated that the rate of deposit formation increased slightly with pressure over the range 136 atm to 340 atm. Finally, lating the inside wall of the tubes with nickel was found to significantly reduce carbon deposition rates for RP-1 fuel
Towards 2000: A Tougher Future for Australian Business?
The paper reports on the future business environment expected by top level Australian executives. It forecasts environmental changes to the year 2000 and updates projections reported in an earlier study. Specifically, top managers from 171 of Australia\u27s largest 500 corporations provide their views concerning world ecology, the economy, technology and political-social developments. Their perceptions are then linked to specific competitive strategies that are evoked by the long-range forecast which they expect
Deposit formation in hydrocarbon rocket fuels: Executive summary
An experimental program was conducted to study deposit formation in hydrocarbon fuels under flow conditions that exist in high-pressure, rocket engine cooling systems. A high pressure fuel coking test apparatus was designed and developed and was used to evaluate thermal decomposition (coking) limits and carbon deposition rates in heated copper tubes for two hydrocarbon rocket fuels, RP-1 and commercial-grade propane. Tests were also conducted using JP-7 and chemically-pure propane as being representative of more refined cuts of the baseline fuels. A parametric evaluation of fuel thermal stability was performed at pressures of 136 atm to 340 atm, bulk fuel velocities in the range 6 to 30 m/sec, and tube wall temperatures in the range 422 to 811K. In addition, the effect of the inside wall material on deposit formation was evaluated in selected tests which were conducted using nickel-plated tubes. The results of the tests indicated that substantial deposit formation occurs with RP-1 fuel at wall temperatures between 600 and 800K, with peak deposit formation occurring near 700K. No improvements were obtained when de-oxygenated JP-7 fuel was substituted for RP-1. The carbon deposition rates for the propane fuels were generally higher than those obtained for either of the kerosene fuels at any given wall temperature. There appeared to be little difference between commercial-grade and chemically-pure propane with regard to type and quantity of deposit. The results of tests conducted with RP-1 indicated that the rate of deposit formation increased slightly with pressure over the range 136 atm to 340 atm. Finally, plating the inside wall of the tubes with nickel was found to significantly reduce carbon deposition rates for RP-1 fuel
N and Z odd-even staggering in Kr + Sn collisions at Fermi energies
The odd-even staggering of the yield of final reaction products has been
studied as a function of proton (Z) and neutron (N) numbers for the collisions
84 Kr+112 Sn and 84 Kr+124 Sn at 35 MeV/nucleon, in a wide range of elements
(up to Z ~ 20). The experimental data show that staggering effects rapidly
decrease with increasing size of the fragments. Moreover the staggering in N is
definitely larger than the one in Z. Similar general features are qualitatively
reproduced by the GEMINI code. Concerning the comparison of the two systems,
the staggering in N is in general rather similar, being slightly larger only
for the lightest fragments produced in the n-rich system. In contrast the
staggering in Z, although smaller than that in N, is sizably larger for the
n-poor system with respect to the n-rich one.Comment: 6 pages, 5 figures, Revtex forma
Isospin transport in 84Kr + 112,124Sn collisions at Fermi energies
Isotopically resolved fragments with Z<=20 have been studied with high
resolution telescopes in a test run for the FAZIA collaboration. The fragments
were produced by the collision of a 84Kr beam at 35 MeV/nucleon with a n-rich
(124Sn) and a n-poor (112Sn) target. The fragments, detected close to the
grazing angle, are mainly emitted from the phase-space region of the
projectile. The fragment isotopic content clearly depends on the n-richness of
the target and it is a direct evidence of isospin diffusion between projectile
and target. The observed enhanced neutron richness of light fragments emitted
from the phase-space region close to the center of mass of the system can be
interpreted as an effect of isospin drift in the diluted neck region.Comment: 8 pages, 7 figure
Nuclear multifragmentation time-scale and fluctuations of largest fragment size
Distributions of the largest fragment charge, Zmax, in multifragmentation
reactions around the Fermi energy can be decomposed into a sum of a Gaussian
and a Gumbel distribution, whereas at much higher or lower energies one or the
other distribution is asymptotically dominant. We demonstrate the same generic
behavior for the largest cluster size in critical aggregation models for small
systems, in or out of equilibrium, around the critical point. By analogy with
the time-dependent irreversible aggregation model, we infer that Zmax
distributions are characteristic of the multifragmentation time-scale, which is
largely determined by the onset of radial expansion in this energy range.Comment: Accepted for publication in Physical Review Letters on 8/4/201
Coulomb chronometry to probe the decay mechanism of hot nuclei
In 129 Xe+ nat Sn central collisions from 8 to 25 MeV/A, the three-fragment
exit channel occurs with a significant cross section. We show that these
fragments arise from two successive binary splittings of a heavy composite
system. The sequence of fragment production is determined. Strong Coulomb
proximity effects are observed in the three-fragment final state. A comparison
with Coulomb trajec-tory calculations shows that the time scale between the
consecutive break-ups decreases with increasing bombarding energy, becoming
quasi-simultaneous above excitation energy E * = 4.00.5 MeV/A. This
transition from sequential to simultaneous break-up was interpreted as the
signature of the onset of multifragmentation for the three-fragment exit
channel in this system.Comment: 12 pages; 13 Figures; 4 Table; Accepted for publication in Physical
Review
Influence of Neutron Enrichment on Disintegration Modes of Compound Nuclei
Cross sections, kinetic energy and angular distributions of fragments with
charge 6Z28 emitted in 78,82Kr+40C at 5.5 MeV/A reactions were
measured at the GANIL facility using the INDRA apparatus. This experiment aims
to investigate the influence of the neutron enrichment on the decay mechanism
of excited nuclei. Data are discussed in comparison with predictions of
transition state and Hauser-Feshbach models.Comment: 8 pages, 1 figure, paper presented at the First Workshop on "State of
the Art in Nuclear Cluster Physics" 13-16 May, 2008, at Strasbourg, France
(SOTANCP2008) and accepted for publication at International Journal of Modern
Physics E (Special Issue), Proceedings of SOTANCP2008 (to be published
Applications of Endothermic Reaction Technology to the High Speed Civil Transport
The success of strategies for controlling emissions and enhancing performance in High Speed Research applications may be Increased by more effective utilization of the heat sink afforded by the fuel in the vehicle thermal management system. This study quantifies the potential benefits associated with the use of supercritical preheating and endothermic cracking of let fuel prior to combustion to enhance the thermal management capabilities of the propulsion systems in the High Speed Civil Transport (HSCT). A fuel-cooled thermal management system, consisting of plate-fin heat exchangers and a small auxiliary compressor, is defined for the HSCT, Integrated with the engine, and an assessment of the effect on engine performance, weight, and operating cost is performed. The analysis indicates significant savings due a projected improvement in fuel economy, and the potential for additional benefit if the cycle is modified to take full advantage of all the heat sink available in the fuel
Energy measurement and fragment identification using digital signals from partially depleted Si detectors
A study of identification properties of a Si-Si DE-E telescope exploiting an
underdepleted residual-energy detector has been performed. Five different bias
voltages have been used, one corresponding to full depletion, the others
associated with a depleted layer ranging from 90% to 60% of the detector
thickness. Fragment identification has been performed using either the DE-E
technique or Pulse Shape Analysis (PSA). Both detectors are reverse mounted:
particles enter from the low field side, to enhance the PSA performance. The
achieved charge and mass resolution has been quantitatively expressed using a
Figure of Merit (FoM). Charge collection efficiency has been evaluated and the
possibility of energy calibration corrections has been considered. We find that
the DE-E performance is not affected by incomplete depletion even when only 60%
of the wafer is depleted. Isotopic separation capability improves at lower bias
voltages with respect to full depletion, though charge identification
thresholds are higher than at full depletion. Good isotopic identification via
PSA has been obtained from a partially depleted detector whose doping
uniformity is not good enough for isotopic identification at full depletion.Comment: 13 pages, 10 figures 5 tables; submitted to European Physical Journal
- …
