3,357 research outputs found

    Elliptic generation of composite three-dimensional grids about realistic aircraft

    Get PDF
    An elliptic method for generating composite grids about realistic aircraft is presented. A body-conforming grid is first generated about the entire aircraft by the solution of Poisson's differential equation. This grid has relatively coarse spacing, and it covers the entire physical domain. At boundary surfaces, cell size is controlled and cell skewness is nearly eliminated by inhomogeneous terms, which are found automatically by the program. Certain regions of the grid in which high gradients are expected, and which map into rectangular solids in the computational domain, are then designated for zonal refinement. Spacing in the zonal grids is reduced by adding points with a simple, algebraic scheme. Details of the grid generation method are presented along with results of the present application, a wing-body configuration based on the F-16 fighter aircraft

    A computer program to generate two-dimensional grids about airfoils and other shapes by the use of Poisson's equation

    Get PDF
    A method for generating two dimensional finite difference grids about airfoils and other shapes by the use of the Poisson differential equation is developed. The inhomogeneous terms are automatically chosen such that two important effects are imposed on the grid at both the inner and outer boundaries. The first effect is control of the spacing between mesh points along mesh lines intersecting the boundaries. The second effect is control of the angles with which mesh lines intersect the boundaries. A FORTRAN computer program has been written to use this method. A description of the program, a discussion of the control parameters, and a set of sample cases are included

    Numerical generation of two-dimensional grids by the use of Poisson equations with grid control at boundaries

    Get PDF
    A method for generating boundary-fitted, curvilinear, two dimensional grids by the use of the Poisson equations is presented. Grids of C-type and O-type were made about airfoils and other shapes, with circular, rectangular, cascade-type, and other outer boundary shapes. Both viscous and inviscid spacings were used. In all cases, two important types of grid control can be exercised at both inner and outer boundaries. First is arbitrary control of the distances between the boundaries and the adjacent lines of the same coordinate family, i.e., stand-off distances. Second is arbitrary control of the angles with which lines of the opposite coordinate family intersect the boundaries. Thus, both grid cell size (or aspect ratio) and grid cell skewness are controlled at boundaries. Reasonable cell size and shape are ensured even in cases wherein extreme boundary shapes would tend to cause skewness or poorly controlled grid spacing. An inherent feature of the Poisson equations is that lines in the interior of the grid smoothly connect the boundary points (the grid mapping functions are second order differentiable)

    Simplified clustering of nonorthogonal grids generated by elliptic partial differential equations

    Get PDF
    A simple clustering transformation is combined with the Thompson, Thames, and Mastin (TTM) method of generating computational grids to produce controlled mesh spacings. For various practical grids, the resulting hybrid scheme is easier to apply than the inhomogeneous clustering terms included in the TTM method for this purpose. The technique is illustrated in application to airfoil problems, and listings of a FORTRAN computer code for this usage are included

    Rousseau on the Nature of Nature and Political Philosophy

    Get PDF

    Small Payload Integration and Testing Project Development

    Get PDF
    The National Aeronautics and Space Administration's (NASA) Kennedy Space Center (KSC) has mainly focused on large payloads for space flight beginning with the Apollo program to the assembly and resupply of the International Space Station using the Space Shuttle. NASA KSC is currently working on contracting manned Low Earth Orbit (LEO) to commercial providers, developing Space Launch System, the Orion program, deep space manned programs which could reach Mars, and providing technical expertise for the Launch Services Program for science mission payloads/satellites. KSC has always supported secondary payloads and smaller satellites as the launch provider; however, they are beginning to take a more active role in integrating and testing secondary payloads into future flight opportunities. A new line of business, the Small Payload Integration and Testing Services (SPLITS), has been established to provide a one stop shop that can integrate and test payloads. SPLITS will assist high schools, universities, companies and consortiums interested in testing or launching small payloads. The goal of SPLITS is to simplify and facilitate access to KSC's expertise and capabilities for small payloads integration and testing and to help grow the space industry. An effort exists at Kennedy Space Center to improve the external KSC website. External services has partnered with SPLITS as a content test bed for attracting prospective customers. SPLITS is an emerging effort that coincides with the relaunch of the website and has a goal of attracting external partnerships. This website will be a "front door" access point for all potential partners as it will contain an overview of KSC's services, expertise and includes the pertinent contact information

    Internal and external axial corner flows

    Get PDF
    The inviscid, internal, and external axial corner flows generated by two intersecting wedges traveling supersonically are obtained by use of a second-order shock-capturing, finite-difference approach. The governing equations are solved iteratively in conical coordinates to yield the complicated wave structure of the internal corner and the simple peripheral shock of the external corner. The numerical results for the internal flows compare favorably with existing experimental data

    Generation and Maintenance of ILIAD Medical Knowledge in a Hypercard Environment

    Get PDF
    Conference PaperBiomedical Informatic

    Passing Partial Information among Bayesean and Boolean Frames

    Get PDF
    Conference PaperBiomedical Informatic

    The Quest for a General Theory of Leadership

    Get PDF
    In this compelling book, top scholars from diverse fields describe the progress they have made in developing a general theory of leadership. Led by James MacGregor Burns, Pulitzer Prize winning author of the classic Leadership (1978), they tell the story of this intellectual venture and the conclusions and questions that arose from it.https://scholarship.richmond.edu/bookshelf/1009/thumbnail.jp
    • …
    corecore