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SUMMARY

The inviscid, internal and external axial corner flows generated by two
intersecting wedges traveling supersonically are obtained by use of a second-
order shock-capturing, finite-difference approach. The governing equations
are solved iteratively iri conical coordinates to yield the complicated wave
structure of the internal corner and the simple peripheral shock of the
external corner. The numerical results for the internal flows compare favor-
ably with existing experimental data.

INTRODUCTION

Existing supersonic aircraft such as the B-l, F-14, F-15, Concorde, and .
recently proposed designs of advanced hypersonic research aircraft such as
that shown in figure 1, possess engine .inlets which are composed of planar
compression or expansion surfaces with swept and unswept leading edges.
These surfaces form various combinations of internal and external axial cor-
ners. Such a corner configuration can generate a rather complicated inter-
ference flowfield whose prediction is of considerable interest to the vehicle
designer, because of the severe pressure gradients and high local heating that
can occur at the surface.

The typical internal corner configuration studied in this paper and the
coordinate system used are shown in figure 2. The flow direction is aligned
with the x-axis. The vertical wedge is unswept and is always considered a
compression surface; i.e., 62 > 0. The horizontal or base wedge can have a
sweep of A and be either a compression or an expansion surface; i.e.,
61 £ 0.

The conical wave structure for a typical swept, compression-compression
configuration is also shown in figure 2. The shock structure consists of a
planar shock emanating from the leading edge of each wedge, a corner shock
that joins the two wedge shocks, and two embedded shocks that stretch from
the body to the triple points. A slip surface exists between each of the
triple points and the axial corner at which there exists a vortical singu-
larity.
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If the base wedge is an expansion surface; i.e., 6^ > 0, then a Prandtl-
Meyer expansion fan emanates from the leading edge and intersects the vertical
wedge shock perpendicularly. As a -result of the Interaction, the wedge shock
is bent and shifted 'slightly towards the axial corner, becoming weakened in
the process. The expansion fan, after interaction with the wedge shock,
becomes concave with respect to the corner.

A typical external corner configuration is shown in figure 3 and con-
sists of two intersecting compression surfaces with angles 6^ and 62
sweeps and o. The flow structure about the external corner is consid-
erably simpler than that of the internal corner. It consists of a single
continuous shock wave whose strength in rounding the corner transitions from
that of the 6i~wedge shock to that of the 62~wedge shock. Like the inter-
nal-flow problem, there also exists a vortical singularity at the axial cor-
ner due to the convergence of the cross-flow streamlines (each with different
values of entropy) .

Both the internal and external axial corner flows are conical since
there is no characteristic length associated with the body. Viscous effects
are assumed to be minimal, and therefore the flow is governed by the three-
dimensional steady-flow Euler equations. These equations, under a nonorthog-
onal coordinate transformation which introduces conical self-similarity and
aligns certain independent variables with the body, are hyperbolic and can be
integrated in an iterative fashion using MacCormack's finite-difference
algorithm (ref. 1). The internal corner problem with its complicated wave
structure is solved using the shock-capturing philosophy (ref. 2) while the
external corner problem with its single peripheral shock is solved using both
the shock-capturing and shock-fitting approaches.

THEORY

The governing partial differential equations (continuity, x, y, and z
momentum) in Cartesian coordinates (see figs. 2 and 3) are first written in
the dimensionless strong conservation-law form:

** ** **
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and where k = (y-l)/2Y» Y being the ratio of specific heats.
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In equation (1), pressure p and density p are made dimensionless with
respect to free-stream stagnation conditions, and velocity components u, v,
and w are made dimensionless with respect to the maximum adiabatic velocity.
The above system of equations is made complete by the addition of the steady-
flow energy equation which can be written in the following dimensionless form:

/-, 2ill - u -
2 2

v - w (2)

It is desirable when solving fluid flow problems to transform the
independent variables so that the new coordinates are aligned with the;sur-
face of the body. This alleviates the numerical difficulties associated with
satisfying the tangency conditions for an unequally spaced grid. A transfor-
mation which satisfies the above criterion and also includes conical self-
similarity is

C = x

n = y/(x - z tan

£ = z/(x + y tan A2)

(3)

where A^ and A2 are depicted in figure 3 for the external corner. For
the internal corner, A^ = A and A2 = 0.

Under the above transformation equation (1) becomes

* * * *
E +F +G_ + H =0
C n £

(4)

where
x xx
E = E cd

X XX XX XX

F = -E pc + F c + G T]c .+ tan A

* XX XX XX

G = -E £d - F ?d tan A2 + G d

H = E*[-c(-b +(C/e))tan ̂  - d(a -(n/e))tan H2]

+ F*[-d(-l +(l/e))tan AZ - C(c/e)tan AX tan

+ G [-c(l -(l/e))tan A., - n(d/e)tan Aĵ  tan /I

a = n(l - 5 tan Â )̂ .

b = 5(1 + n tan A_)/ei
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c = C(l + a- tan

d = C(l - b tan

e, = 1 + n? tan A.. tan A-

Thus equation (4) governs the flow over both the internal and external cor-
ners and can be solved without any further relations using the shock- :; ':
capturing approach.

In order to treat the peripheral shock of the external problem as a
sharp discontinuity, equation (4) is first normalized between the surface of
each wedge and the shock. This requires a separate coordinate transformation
for each of the two regions outlined by points 1-2-3-4-1 and 5-6-7-8-5 in
figure 4. The necessary equations will be developed for the horizontal
region only, since the derivation of the analogous equations for the vertical
region is the same, • '

The required transformation is

x = (n - nb)/[ns(?,O - nbJ

and when applied to equation (4) yields

r + F. + G_ + H = 0c, A t,

(5)

(6)

where

E = E
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The equation of the shock is ys = ys(x,z), and the quantity (ns)̂  of
equation (6) can be expressed as a function of the derivatives (ys)x

 and

(ys)z as follows:

" y •- (y,),- (ys)22

VVZ - ̂

vhere

82

•*• •
ne

tan A.

. Zzc = F
£ tan

z =1 • Tie.

n?(l - 5 tan A )
~~

K n tan
• z = — '• •

.The quantity (ns)̂  is evaluated numerically and (7s)x
 is computed from

the Rankine-Hugoniot equations:
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(y \ = u/•̂ s/x »lv -«

> (8)

1 +
Y +

where

Vo
and the subscript °° indicates the free-stream condition.

Folloving the approach developed by Thomas e.t al. (ref. 3), it is only .
necessary to know the pressure behind the shock in order to propagate ,it. The
remaining flow quantities can be found from equation (8). Shock pressure is
determined by a finite-difference approximation of the governing partial dif-
ferential equations at the shock (refs. 4 and 5).

Equation (4), which governs both corner flows (via shock-capturing), and
equation (6), which governs only the external corner flow (via shock-fitting),
are hyperbolic with respect to the conical coordinate ?. These equations
can therefore be solved iteratively until. E* of equation (4) and E^ of
equation (6) are zero, indicating the establishment of conical flow.

»'. " "'. i - ' * '

The boundary condition at the surface of each wedge requires that ,the
flow be tangent to it. Since an iterative procedure is employed to solve the
governing equations, a simple Euler predictor/modified Euler corrector with,
one-sided normal derivatives is used at each surface. The following condi-
tion on the velocity components is imposed after the corrector, step.to.satisfy
tangency:
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v = u tan 6-j - w tan 6-j. tan ^1> horizontal .wedge
w = u tan 62 + v tan 62 tan hy.'* vertical wedge

The axial corner is treated as a multiple-valued point to account for the
vortical singularity that exists there. Although pressure is continuous,
density and velocity are discontinuous.

The computational boundaries for both the internal and external corner
flows are shown in figure 4. Region I corresponds to the uniform free stream,
region II to the horizontal wedge flow, region III to the vertical wedge
flow, and region IV represents the unknown conical flow. Regions I, II, and
III are known flow regions and are hyperbolic zones -in the cross-flow planes.
Region IV is unknown and elliptic in the cross-flow plane. It is the deter-
mination of this region that is the crux of the present problem.

RESULTS

Numerical results for the internal corner flow problem are shown in
figures 5-10. These results were computed by Kutler (ref. 6) and Shankar and
Anderson (ref. 7).

Some of the most recently published experimental data obtained for the
corner-flow problem are by West and Korkegi (ref. 8). They tested an equal
wedge angle (6^ = 62 = 9.49°) configuration in Mach 2.98 flow over a
Reynolds number range from 0.4xl06 to 60xl06, which included laminar, tran-
sitional, and turbulent boundary layers. A numerical solution for this same
case was obtained, and the shock wave and slip surface structure are compared
with the high Reynolds number experiment in figure 5.

The inviscid embedded shock is slightly concave when viewed from the
origin falling inside the location' of the corresponding experimental shock.
The corner shock, which is slightly convexed when viewed from the origin,
also falls inside the experimental shock. The positions of the experimental
and numerical wedge shocks agree exactly. It appears, therefore, that the
displacement effects of the boundary layer in the region bounded by the cor-r
ner and embedded shocks result in an effective thickening of the body, and
this forces the shock structure outward.

The location of the slip surfaces for this case can be found from plots
of density and is shown as the thin double line in figure 5 stretching from .
the triple point to the origin. The slip surface is slightly curved and
asymptotically approaches the bisector near the origin. The experimental
shear layer is also curved but appears to merge before the origin is reached.
Since the positions of the numerical and experimental triple points are dif-
ferent, the'comparison between the inviscid slip surface and viscous shear
layer, which originate at the triple-points, is unfair. But, qualitatively,
their basic-shapes are the same.- '-•

A comparison of the numerical and experimental (turbulent boundary
layer) surface pressures is shown in figure 6. The first pressure rise in
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the experimental data.(decreasing) indicates the onset of separation. This
is followed by a reduced gradient region that indicates separation and again
a .rapid pressure rise that indicates reattachment. The pressure between the
reattachment point and the.origin is greater than that of. the inviscid *
result. This higher pressure indicates an apparent thickening of the bp'dy in
this region due to .boundary-layer displacement effects.

Nangia (ref. 9) performed an experimental study on the wave interactions
in supersonic intakes and obtained some rather interesting data. Figures 7-9
are numerical solutions which compare with Nangia's results. Figure 7 is a
pressure contour plot for an unswept configuration with '.6]_ = -5° and '
62 =7.5° for a Mach number of 3. It is interesting to note that the'wave.,
structure does not exhibit any corner shock or slip surfaces. This appears
to be correct because changes through the expansion fan occur isentropically.
However, an auxiliary compression wave is formed in the corner region. The '
wedge expansion fan, after the interaction with the wedge shock, turns away
from the axial corner and is concave when viewed from the origin, whereas the
wedge shock turns toward the axial corner and appears to be slightly .convex; .

- ,The inviscid numerical wave structure compares very well with the exper-
imental results of Nangia. The auxiliary compression fan in the corner
region, as predicted by the numerical solution, is not observed in theexper-'
imental results, however.

A .pressure contour plot for a A = 30°, 6^ = 5°, and 63 = 7.5° ,,corifig-
! uration at.a Mach number of 3 is shown in figure 8. The numerical solution
is again compared with the experimental data of Nangia. The computed surface-
pressure distribution for both the horizontal and vertical wedges is compared
with Nangia?s experimental measurements in figure 9. " ' 7

The final case considered on the internal corner problem consists 'of a.""*
.A *:30°i 6j - -58, and 62 = 7-5° configuration at a Mach number of 3... The
pressure contour plot of the numerical solution is shown in figure 10. The.
wedge expansion fan, after interacting with the wedge shpck^. turns away from
the axial corner and appears to be concave when viewed from the origin. The
intersecting wedge shock is deflected towards the axial corner under the
influence of the wedge expansion fan.. An auxiliary weak shock is formed in
the corner region which merges with the .weak embedded shock and forms a
strong,shock near the horizontal wedge surface. The shock impingement on :,
this surface is nearer the axial corner than the wedge shock. The strength
of the impinging shock appears to increase with increasing sweep angle..
Furthermore, the interference region decreases as the sweep angle increases..

' '•• ' ' - • • ' • •. . •• "L •',.*•
Numerical solutions for two external corner configurations were generated

and are shown in figures 11-14. Results are-presented for both the shock-
capturing and^shock-fitting techniques. Figure 11 shows the shock, shape and1

cross^flow sonic line for an unswept equal-angled (6^ = 62 = 10°) .configura-
tion at a Mach number of 3. The surface-pressure distribution for, this case
compared to linear theory is shown in figure 12.

The shock and cross-flow sonic-line locations for a swept (A^ = A2 =
30°)., equal wedge angle (61 = 62 = 10°) configuration at Mach number 3 is
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shown in figure 13. The shock-capturing results are almost identical-'.to the
shock-fitting solution. The surface pressure distribution for this configura-
tion is shown figure 14, and again both the shock-capturing and shock-fitting
results agree. ta - . • • .

All of the numerical results presented here were obtained on serial
machines but employed a numerical procedure which is particularly well suited
for the parallel processing philosophy. Should the computing power of an
ILLIAC IV be required for a more complicated problem, such as a multiple-
corner configuration, some of the coding techniques used for the solutions
presented here could easily be applied. •

REFERENCES

1. MacCormack, R. W.: The Effect of Viscosity in Hypervelocity Impact
Cratering. AIAA Paper 69-354, 1969.

2. Kutler, P., and Lqmax, H.: Shock-Capturing, Finite Difference Approach
to Supersonic Flows. J. of Spacecraft and Rockets, vol. 8, 1971, pp.
1175-1182.

3. Thomas, P. D., Vinokur, M., Bastianon, R., and Conti, R. J.: Numerical
Solution for the Three-Dimensional Inviscid Supersonic Flow of a Blunt
Delta Body. AIAA Jour., vol. 10, no. 7, July 1972, pp. 887-894. <

4. Kutler, P., Reinhardt, W. A., and Warming, R. F;: Multishocked, Three-'
Dimensional Supersonic Flowfields with Real Gas 'Effects^ AIAA
Jour., vol. 11, no. 5, May 1973, pp. 657-664.

5. Kutler, P.: Computation of Three-Dimensional, Inviscid" Supersonic Flows.
Computational Methods in Fluid Dynamics, Lecture Notes in Physics, AGARD,
1975. (To be published.) -

6. Kutler, P.: Supersonic Flow in the Corner Formed by Two Intersecting
Wedges. AIAA Jour., vol. 12, 1974, pp. 577-578.

7. Shankar, V., and Anderson, D. A.: Numerical Solutions for Inviscid "
Supersonic Corner Flows. Final Report ISU-ERI-AMES-74090, May 1974.

8. West, J. E., and Korkegi, R. H.: Supersonic Interactions in the Corner
of Intersecting Wedges at High Reynolds Numbers. AIAA Journal, vol.
10, May 1972, pp. 652-656. - ^ •'•'

9. Nangia, R. K.: Three-Dimensional Wave Interactions in Supersonic
Intakes. Second International Symposium on Air Breathing Engines -
(Sheffield, United Kingdom), March 1974.

651



Fig. 1 Hypersonic airbreathing aircraft
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Fig. 2 Coordinate system and wave structure for internal axial corner.
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Fig. 3 Coordinate system and shock structure for external axial corner.
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Fig. 4 Computational boundaries.for internal and external axial corners.
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Fig. 5 Comparison of numerical and experimental shock patterns; M = 2.98,
& = 6 • 9.49".
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Fig. 6 Comparison of numerical and experimental surface-pressure.distribu-
tion; M = 2.98, 6i - 62 = 9.49, A = 0°.
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Fig. 7 Comparison of numerical and experimental wave structure; M
6L = -5°., 62 " 7.5°, A = 0°.
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Fig.::8 Comparison of numerical and experimental shock structure; M =3,
6]. = 5°, 62 = 7.5°, A = 30°. -
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Fig. 9 Comparison of numerical and experimental surface-pressure distribu-
tion; M = 3,' &i =5°, 62 = 7.5°, A = 30°.
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Fig. 10 Pressure contour plot of computational plane; M = 3, 5^ = -5°,
62 = 7.5°, A = 30°. ' .

;656



A SHOCK-FIT TING

o SHOCK-CAPTURING

PERIPHERAL
SHOCK

CROSS-FLOW
SONIC LINE

Fig. 11 Shock structure for symmetric external corner; M = 3, Si
AI = A2 - 0°.
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'Fig I 13 Shock structure for swept external corner; M =3,
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Fig. 14 Surface-pressure distribution for swept external corner; M • 3,
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