229 research outputs found

    The Sisyphus particle detector

    Get PDF
    The particle measurement subsystem planned for the MJS 77 mission is described. Scientific objectives with respect to Saturn's rings are as follows: (1) measure particles outside the visible rings, including particulates orbiting in more distant rings and particles scattered out of visible rings, (2) measure meteoroid environment in vicinity of Saturn, and (3) develop an understanding of the dynamics of the rings with respect to their collisional interaction with the environment

    Meteoroid hazards in deep space Final report

    Get PDF
    Design and development of Sisyphus meteoroid detection system for interplanetary spacecraf

    The late stages of evolution of helium star-neutron star binaries and the formation of double neutron star systems

    Full text link
    With a view to understanding the formation of double neutron-stars (DNS), we investigate the late stages of evolution of helium stars with masses of 2.8 - 6.4 Msun in binary systems with a 1.4 Msun neutron-star companion. We found that mass transfer from 2.8 - 3.3 Msun helium stars and from 3.3 - 3.8 Msun in very close orbits (P_orb > 0.25d) will end up in a common-envelope (CE) and spiral-in phase due to the development of a convective helium envelope. If the neutron star has sufficient time to complete the spiraling-in process before the core collapses, the system will produce very tight DNSs (P_orb ~ 0.01d) with a merger timescale of the order of 1 Myr or less. These systems would have important consequences for the detection rate of GWR and for the understanding of GRB progenitors. On the other hand, if the time left until the explosion is shorter than the orbital-decay timescale, the system will undergo a SN explosion during the CE phase. Helium stars with masses 3.3 - 3.8 Msun in wider orbits (P_orb > 0.25d) and those more massive than 3.8 Msun do not go through CE evolution. The remnants of these massive helium stars are DNSs with periods in the range of 0.1 - 1 d. This suggests that this range of mass includes the progenitors of the galactic DNSs with close orbits (B1913+16 and B1534+12). A minimum kick velocity of 70 km/s and 0 km/s (for B1913+16 and B1534+12, respectively) must have been imparted at the birth of the pulsar's companion. The DNSs with wider orbits (J1518+4904 and probably J1811-1736) are produced from helium star-neutron star binaries which avoid RLOF, with the helium star more massive than 2.5 Msun. For these systems the minimum kick velocities are 50 km/s and 10 km/s (for J1518+4904 and J1811-1736, respectively).Comment: 16 pages, latex, 12 figures, accepted for publication in MNRA

    The Role of Helium Stars in the Formation of Double Neutron Stars

    Get PDF
    We have calculated the evolution of 60 model binary systems consisting of helium stars in the mass range of M_He= 2.5-6Msun with a 1.4Msun neutron star companion to investigate the formation of double neutron star systems.Orbital periods ranging from 0.09 to 2 days are considered, corresponding to Roche lobe overflow starting from the helium main sequence to after the ignition of carbon burning in the core. We have also examined the evolution into a common envelope phase via secular instability, delayed dynamical instability, and the consequence of matter filling the neutron star's Roche lobe. The survival of some close He-star neutron-star binaries through the last mass transfer episode (either dynamically stable or unstable mass transfer phase) leads to the formation of extremely short-period double neutron star systems (with P<~0.1days). In addition, we find that systems throughout the entire calculated mass range can evolve into a common envelope phase, depending on the orbital period at the onset of mass transfer. The critical orbital period below which common envelope evolution occurs generally increases with M_He. In addition, a common envelope phase may occur during a short time for systems characterized by orbital periods of 0.1-0.5 days at low He-star masses (~ 2.6-3.3Msun). The existence of a short-period population of double neutron stars increases the predicted detection rate of inspiral events by ground-based gravitational-wave detectors and impacts their merger location in host galaxies and their possible role as gamma-ray burst progenitors. We use a set of population synthesis calculations and investigate the implications of the mass-transfer results for the orbital properties of DNS populations.Comment: 30 pages, Latex (AASTeX), 1 table, 8 figures. To appear in ApJ, v592 n1 July 20, 200

    Numerical Simulations of the Onset and Stability of Dynamical Mass Transfer in Binaries

    Get PDF
    Hydrodynamical simulations of semi-detached, polytropic binary stars are presented in an effort to study the onset and stability of dynamical mass transfer events. Initial, synchronously rotating equilibrium models are constructed using a self-consistent-field technique and then evolved with an Eulerian hydrodynamics code in a fully self-consistent manner. We describe code improvements introduced over the past few years that permit us to follow dynamical mass-transfer events through more than 30 orbits. Mass-transfer evolutions are presented for two different initial configurations: A dynamically unstable binary with initial mass ratio (donor/accretor) q0=1.3q_0 = 1.3 that leads to a complete merger in 10\sim 10 orbits; and a double-degenerate binary with initial mass ratio q0=0.5q_0 = 0.5 that, after some initial unstable growth of mass transfer, tends to separate as the mass-transfer rate levels off.Comment: 47 pages, 11 figures, submitted to the Astrophysical Journal. See http://www.phys.lsu.edu/faculty/tohline/astroph/dmtf05 for high resolution figures and mpeg animation

    Type Ia Supernovae: An Examination of Potential Progenitors and the Redshift Distribution

    Get PDF
    We examine the possibility that supernovae type Ia (SN Ia) are produced by white dwarfs accreting from Roche-lobe filling evolved companions, under the assumption that a strong optically thick stellar wind from accretor is able to stabilize the mass transfer. We show that if a mass transfer phase on a thermal timescale precedes a nuclear burning driven phase, then such systems (of which the supersoft X-ray sources are a subgroup) can account for about 10% of the inferred SN Ia rate. In addition, we examine the cosmic history of the supernova rate, and we show that the ratio of the rate of SN Ia to the rate of supernovae produced by massive stars (supernovae of types II, Ib, Ic) should increase from about z = 1 towards lower redshifts.Comment: 29 pages, Latex, 6 figures, aasms4.sty, psfig.sty, to appear in The Astrophysical Journa

    An RGS4-Mediated Phenotypic Switch of Bronchial Smooth Muscle Cells Promotes Fixed Airway Obstruction in Asthma

    Get PDF
    Abstract In severe asthma, bronchodilator-and steroid-insensitive airflow obstruction develops through unknown mechanisms characterized by increased lung airway smooth muscle (ASM) mass and stiffness. We explored the role of a Regulator of Gprotein Signaling protein (RGS4) in the ASM hyperplasia and reduced contractile capacity characteristic of advanced asthma. Using immunocytochemical staining, ASM expression of RGS4 was determined in endobronchial biopsies from healthy subjects and those from subjects with mild, moderate and severe asthma. Cell proliferation assays, agonist-induced calcium mobilization and bronchoconstriction were determined in cultured human ASM cells and in human precision cut lung slices. Using gain-and loss-of-function approaches, the precise role of RGS proteins was determined in stimulating human ASM proliferation and inhibiting bronchoconstriction. RGS4 expression was restricted to a subpopulation of ASM and was specifically upregulated by mitogens, which induced a hyperproliferative and hypocontractile ASM phenotype similar to that observed in recalcitrant asthma. RGS4 expression was markedly increased in bronchial smooth muscle of patients with severe asthma, and expression correlated significantly with reduced pulmonary function. Whereas RGS4 inhibited G proteincoupled receptor (GPCR)-mediated bronchoconstriction, unexpectedly RGS4 was required for PDGF-induced proliferation and sustained activation of PI3K, a mitogenic signaling molecule that regulates ASM proliferation. These studies indicate that increased RGS4 expression promotes a phenotypic switch of ASM, evoking irreversible airway obstruction in subjects with severe asthma

    Modelling the formation of double white dwarfs

    Get PDF
    We investigate the formation of the ten double-lined double white dwarfs that have been observed so far. A detailed stellar evolution code is used to calculate grids of single-star and binary models and we use these to reconstruct possible evolutionary scenarios. We apply various criteria to select the acceptable solutions from these scenarios. We confirm the conclusion of Nelemans et al. (2000) that formation via conservative mass transfer and a common envelope with spiral-in based on energy balance or via two such spiralins cannot explain the formation of all observed systems. We investigate three different prescriptions of envelope ejection due to dynamical mass loss with angular-momentum balance and show that they can explain the observed masses and orbital periods well. Next, we demand that the age difference of our model is comparable to the observed cooling-age difference and show that this puts a strong constraint on the model solutions. However, the scenario in which the primary loses its envelope in an isotropic wind and the secondary transfers its envelope, which is then re-emitted isotropically, can explain the observed age differences as well. One of these solutions explains the DB-nature of the oldest white dwarf in PG1115+116 along the evolutionary scenario proposed by Maxted et al. (2002a), in which the helium core of the primary becomes exposed due to envelope ejection, evolves into a giant phase and loses its hydrogen-rich outer layers.Comment: 20 pages, 17 figures, 6 tables, accepted for publication in Astronomy and Astrophysics. See http://www.astro.uu.nl/~sluys/publications/ for high-resolution versions of Figs. 15 and 1

    On the formation of neon-enriched donor stars in ultracompact X-ray binaries

    Get PDF
    We study the formation of neon-enriched donor stars in ultracompact X-ray binaries (orbital periods P<80 min) and show that their progenitors have to be low-mass (0.3 - 0.4 solar mass) ``hybrid'' white dwarfs (with CO cores and thick helium mantles). Stable mass transfer is possible if in the initial stages of mass exchange mass is lost from the system, taking away the specific orbital angular momentum of the accretor (``isotropic re-emission''). The excess of neon in the transferred matter is due to chemical fractionation of the white dwarf which has to occur prior to the Roche lobe overflow by the donor. The estimated lower limit of the orbital periods of the systems with neon-enriched donors is close to 10 min. We show that the X-ray pulsar 4U 1626-67, which likely also has a neon-enriched companion, may have been formed via accretion induced collapse of an oxygen-neon white dwarf accretor if the donor was a hybrid white dwarf.Comment: 6 pages, 3 figures, uses aa.cls 5.1 version class file, accepted for publication in Astronomy and Astrophysic
    corecore