717 research outputs found
Study to define unsteady flow fields and their statistical characteristics
Preliminary estimates of space shuttle fluctuating pressure environments were made based on analyses of wind tunnel data, and empirical prediction techniques. Particular emphasis was given to the external tank and solid rocket boosters for the transonic speed regime during launch of a parallel-burn space shuttle configuration. Predicted environments are presented as space-averaged zonal profiles with progressive shading from zone to zone to illustrate spatial variations in the magnitude of the fluctuating pressure coefficient over the surfaces of the external tank and solid rocket boosters. Predictions are provided for the transonic Mach number range from 0.8 equal to or less than M sub infinity equal to or less than 1.5, and for supersonic Mach numbers of 2.0 and 3.0
Analysis of screeching in a cold flow jet experiment
The screech phenomenon observed in a one-sixtieth scale model space shuttle test of the solid rocket booster exhaust flow noise has been investigated. A critical review is given of the cold flow test data representative of Space Shuttle launch configurations to define those parameters which contribute to screech generation. An acoustic feedback mechanism is found to be responsible for the generation of screech. A simple equation which permits prediction of screech frequency in terms of basic testing parameters such as the jet exhaust Mach number and the separating distance from nozzle exit to the surface of model launch pad is presented and is found in good agreement with the test data. Finally, techniques are recommended to eliminate or reduce the screech
Affine and toric hyperplane arrangements
We extend the Billera-Ehrenborg-Readdy map between the intersection lattice
and face lattice of a central hyperplane arrangement to affine and toric
hyperplane arrangements. For arrangements on the torus, we also generalize
Zaslavsky's fundamental results on the number of regions.Comment: 32 pages, 4 figure
Quantifying the Temperature of Maggot Masses and its Relationship to Decomposition
Numerous Calliphoridae species have been observed to form larval aggregations during the feeding stage of development, resulting in localized increases in temperature. This study investigates the relationship between maggot numbers in a mass and heat generation. Single-species aggregations (Lucilia sericata) of various sizes (50–2500 individuals) were reared in the laboratory at a constant ambient temperature of 22°C. Internal mass temperatures were recorded every 5 min throughout the feeding stage of development. Results showed that mass temperatures increased with mass numbers (p-value < 0.001), ranging from 2.5 to 14°C above ambient. A minimum mass size of 1200 produced overall temperatures that were significantly warmer than ambient, diverging away from 22°C after c. 26 h. These results indicate that the microclimate of a mass has the potential to differ significantly from ambient, which may be influencing larval development rates and should therefore be factored into mPMI estimates to increase accuracy
Management Education Reform: Opportunities for Metropolitan Business Schools
American management education, which accounts for a fourth of U.S. bachelor\u27s and master\u27s degrees awarded, is in the midst of a sweeping reconsideration of its governing premises. This article examines the criticisms of business schools and argues that the thirty-year dominance of the academic model over the professional model offers a basic explanation for these shortcomings. It further discusses the role of the business schools\u27 accrediting agency, AACSB, in fostering needed change, identifies special opportunities for metropolitan business schools created by this reform environment, and proposes an action agenda for exploiting these opportunities
Mathematical Surfaces and 3D Printing
https://scholarworks.moreheadstate.edu/student_scholarship_posters/1009/thumbnail.jp
Versatile Coordination of Cyclopentadienyl-Arene Ligands and Its Role in Titanium-Catalyzed Ethylene Trimerization
Cationic titanium(IV) complexes with ansa-(η5-cyclopentadienyl,η6-arene) ligands were synthesized and characterized by X-ray crystallography. The strength of the metal-arene interaction in these systems was studied by variable-temperature NMR spectroscopy. Complexes with a C1 bridge between the cyclopentadienyl and arene moieties feature hemilabile coordination behavior of the ligand and consequently are active ethylene trimerization catalysts. Reaction of the titanium(IV) dimethyl cations with CO results in conversion to the analogous cationic titanium(II) dicarbonyl species. Metal-to-ligand backdonation in these formally low-valent complexes gives rise to a strongly bonded, partially reduced arene moiety. In contrast to the η6-arene coordination mode observed for titanium, the more electron-rich vanadium(V) cations [cyclopentadienyl-arene]V(NiPr2)(NC6H4-4-Me)+ feature η1-arene binding, as determined by a crystallographic study. The three different metal-arene coordination modes that we experimentally observed model intermediates in the cycle for titanium-catalyzed ethylene trimerization. The nature of the metal-arene interaction in these systems was studied by DFT calculations.
Analytical Procedures for Rapid Selection of Coolant Passage Configurations for Air-cooled Turbine Rotor Blades and for Evaluation of Heat-transfer, Strength, and Pressure-loss Characteristics
Analysis of Cooling-air Requirements of Corrugated-insert-type Turbine Blades Suitable for a Supersonic Turbojet Engine
US Cosmic Visions: New Ideas in Dark Matter 2017: Community Report
This white paper summarizes the workshop "U.S. Cosmic Visions: New Ideas in
Dark Matter" held at University of Maryland on March 23-25, 2017.Comment: 102 pages + reference
- …
