16 research outputs found

    Construction of plant transformation vectors carrying beet necrotic yellow vein virus coat protein gene (ii)- plant transformation

    Get PDF
    Fragments containing the coat protein gene of beet necrotic yellow vein virus were cloned in two plant transformation vectors: pCAMBIA3301M with the bar gene as selectable marker, and pCAMBIA1304M, with resistance to hygromycin. Three constructs were made of each vector: CPL, containing coat protein gene with leader sequence; CPS with coat protein gene, and CPSas with coat protein gene in antisense orientation. Vectors pC3301MCPL, pC3301MCPS. and pC3301MCPSas were used in Agrobacterium—mediated transformation of Nicotiana tabacum (tobacco), Nicotiana excelsior and Nicotiana benthamiana. Regenerants that developed roots on selective media were tested for the presence of CP fragments and the bar gene, but most regenerants were nontransformed (50-83% escapes). After all rooted plants had been selfed, and T1 seed germinated on selective media, only plants descending from one N. excelsior regenerant transformed with pC3301MCPS were positive for presence of bar gene and CPS fragment. Tobacco and Nicotiana benthamiana were transformed with constructs pC1304MCPS and pC1304MCPSas. Transformation efficiency was much higher and approximately 50% of regenerants that rooted on media with 20 mg l−1 hygromycin were positive for the presence of CP fragments. All T1 plants were positive for presence of CP fragments

    Functional Characterization of FLT3 Receptor Signaling Deregulation in Acute Myeloid Leukemia by Single Cell Network Profiling (SCNP)

    Get PDF
    Molecular characterization of the FMS-like tyrosine kinase 3 receptor (FLT3) in cytogenetically normal acute myeloid leukemia (AML) has recently been incorporated into clinical guidelines based on correlations between FLT3 internal tandem duplications (FLT3-ITD) and decreased disease-free and overall survival. These mutations result in constitutive activation of FLT3, and FLT3 inhibitors are currently undergoing trials in AML patients selected on FLT3 molecular status. However, the transient and partial responses observed suggest that FLT3 mutational status alone does not provide complete information on FLT3 biological activity at the individual patient level. Examination of variation in cellular responsiveness to signaling modulation may be more informative.Using single cell network profiling (SCNP), cells were treated with extracellular modulators and their functional responses were quantified by multiparametric flow cytometry. Intracellular signaling responses were compared between healthy bone marrow myeloblasts (BMMb) and AML leukemic blasts characterized as FLT3 wild type (FLT3-WT) or FLT3-ITD. Compared to healthy BMMb, FLT3-WT leukemic blasts demonstrated a wide range of signaling responses to FLT3 ligand (FLT3L), including elevated and sustained PI3K and Ras/Raf/Erk signaling. Distinct signaling and apoptosis profiles were observed in FLT3-WT and FLT3-ITD AML samples, with more uniform signaling observed in FLT3-ITD AML samples. Specifically, increased basal p-Stat5 levels, decreased FLT3L induced activation of the PI3K and Ras/Raf/Erk pathways, decreased IL-27 induced activation of the Jak/Stat pathway, and heightened apoptotic responses to agents inducing DNA damage were observed in FLT3-ITD AML samples. Preliminary analysis correlating these findings with clinical outcomes suggests that classification of patient samples based on signaling profiles may more accurately reflect FLT3 signaling deregulation and provide additional information for disease characterization and management.These studies show the feasibility of SCNP to assess modulated intracellular signaling pathways and characterize the biology of individual AML samples in the context of genetic alterations

    Fructan and its relationship to abiotic stress tolerance in plants

    Get PDF
    Numerous studies have been published that attempted to correlate fructan concentrations with freezing and drought tolerance. Studies investigating the effect of fructan on liposomes indicated that a direct interaction between membranes and fructan was possible. This new area of research began to move fructan and its association with stress beyond mere correlation by confirming that fructan has the capacity to stabilize membranes during drying by inserting at least part of the polysaccharide into the lipid headgroup region of the membrane. This helps prevent leakage when water is removed from the system either during freezing or drought. When plants were transformed with the ability to synthesize fructan, a concomitant increase in drought and/or freezing tolerance was confirmed. These experiments indicate that besides an indirect effect of supplying tissues with hexose sugars, fructan has a direct protective effect that can be demonstrated by both model systems and genetic transformation
    corecore