931 research outputs found

    Very High-Redshift Lensed Galaxies

    Full text link
    We review in this paper the main results recently obtained on the identification and study of very high-z galaxies usinglensing clusters as natural gravitational telescopes. We present in detail our pilot survey with ISAAC/VLT, aimed at the detection of z>7 sources. Evolutionary synthesis models for extremely metal-poor and PopIII starbursts have been used to derive the observational properties expected for these high-z galaxies, such as expected magnitudes and colors, line fluxes for the main emission lines, etc. These models have allowed to define fairly robust selection criteria to find z~7-10 galaxies based on broad-band near-IR photometry in combination with the traditional Lyman drop-out technique. The first results issued from our photometric and spectroscopic survey are discussed, in particular the preliminary confirmation rate, and the global properties of our high-z candidates, including the latest results on the possible z=10.0 candidate A1835-1916. The search efficiency should be significantly improved by the future near-IR multi-object ground-based and space facilities. However, strong lensing clusters remain a factor of ~5-10 more efficient than blank fields in this redshift domain, within the FOV of a few arcminutes around the cluster core, for the typical depth required for this survey project.Comment: 14 pages, 7 figures, Proceedings of IAU Symposium No. 225: The Impact of Gravitational Lensing on Cosmology, Y. Mellier and G. Meylan, Ed

    ISAAC/VLT observations of a lensed galaxy at z=10.0

    Get PDF
    We report the first likely spectroscopic confirmation of a z 10.0 galaxy from our ongoing search for distant galaxies with ISAAC/VLT. Galaxy candidates at z >~ 7 are selected from ultra-deep JHKs images in the core of gravitational lensing clusters for which deep optical imaging is also available, including HST data. The object reported here, found behind Abell 1835, exhibits a faint emission line detected in the J band, leading to z=10.0 when identified as Ly-a, in excellent agreement with the photometric redshift determination. Redshifts z < 7 are very unlikely for various reasons we discuss. The object is located on the critical lines corresponding to z=9 to 11. The magnification factor \mu ranges from 25 to 100. For this object we estimate SFR(Ly-a) (0.8-2.2) Msun/yr and SFR(UV) (47-75) Msun/yr, both uncorrected for lensing. The steep UV slope indicates a young object with negligible dust extinction. SED fits with young low-metallicity stellar population models yield (adopting mu=25) a lensing corrected stellar mass of M*~8.e+6 Msun, and luminosities of 2.e+10 Lsun, corresponding to a dark matter halo of a mass of typically M_tot>~ 5.e+8 Msun. In general our observations show that under excellent conditions and using strong gravitational lensing direct observations of galaxies close to the ``dark ages'' are feasible with ground-based 8-10m class telescopes.Comment: To be published in A&A, Vol. 416, p. L35. Press release information, additional figures and information available at http://obswww.unige.ch/sfr and http://webast.ast.obs-mip.fr/galaxie

    The Massive Stellar Content in the Starburst NGC3049: A Test for Hot-Star Mode

    Get PDF
    We have obtained high-spatial resolution ultraviolet and optical STIS spectroscopy and imaging of the metal-rich nuclear starburst in NGC3049. The stellar continuum and the absorption line spectrum in the ultraviolet are used to constrain the massive stellar population. The strong, blueshifted stellar lines of CIV and SiIV detected in the UV spectra indicate a metal-rich, compact, massive (1E6 Msol) cluster of age 3--4 Myr emitting the UV-optical continuum. We find strong evidence against a depletion of massive stars in this metal-rich cluster. The derived age and the upper mass-limit cut-off of the initial mass function are also consistent with the detection of Wolf-Rayet (WR) features at optical wavelengths. As a second independentconstraint on the massive stellar content, the nebular emission-line spectrum is modeled with photoionization codes using stellar spectra from evolutionary synthesis models. However, the nebular lines are badly reproduced by 3--4 Myr instantaneous bursts, as required by the UV line spectrum, when unblanketed WR and/or Kurucz stellar atmospheres are used. The corresponding number of photons above 24 and 54 eV in the synthetic models is too high in comparison with values suggested by the observed line ratios. Since the ionizing spectrum in this regime is dominated by emission from WR stars, this discrepancy between observations and models is most likely the result of incorrect assumptions about the WR stars. Thus we conclude that the nebular spectrum of high-metallicity starbursts is poorly reproduced by models for WR dominated populations. However, the new model set of Smith et al. (2002) with blanketed WR and O atmospheres and adjusted WR temperatures predicts a softer far-UV radiation field, providing a better match to the data.Comment: To be published in ApJ, Dec. issue 17 figures, 3 in gif forma

    The Primordial Helium Abundance: Towards Understanding and Removing the Cosmic Scatter in the dY/dZ Relation

    Get PDF
    We present results from photoionization models of low-metallicity HII regions. These nebulae form the basis for measuring the primordial helium abundance. Our models show that the helium ionization correction factor (ICF) can be non-negligible for nebulae excited by stars with effective temperatures larger than 40,000 K. Furthermore, we find that when the effective temperature rises to above 45,000 K, the ICF can be significantly negative. This result is independent of the choice of stellar atmosphere. However, if an HII region has an [O III] 5007/[O I] 6300 ratio greater than 300, then our models show that, regardless of its metallicity, it will have a negligibly small ICF. A similar, but metallicity dependent, result was found using the [O III] 5007/HÎČ\beta ratio. These two results can be used as selection criteria to remove nebulae with potentially non-negligible ICFs. Using our metallicity independent criterion on the data of Izotov & Thuan (1998) results in a 20% reduction of the rms scatter about the best fit Y−ZY-Z line. A fit to the selected data results in a slight increase of the value of the primordial helium abundance.Comment: 10 pages, 5 figures, accepted by the Ap

    Near-Infrared Microlensing of Stars by the Super-Massive Black Hole in the Galactic Center

    Full text link
    We investigate microlensing amplification of faint stars in the dense stellar cluster in the Galactic Center (GC) by the super-massive black hole (BH). Such events would appear very close to the position of the radio source SgrA*, which is thought to coincide with the BH, and could be observed during the monitoring of stellar motions in the GC. We use the observed K-band (2.2 um) luminosity function (KLF) in the GC and in Baade's Window, as well as stellar population synthesis computations, to construct KLF models for the inner 300 pc of the Galaxy. These, and the observed dynamical properties of this region, are used to compute the rates of microlensing events, which amplify stars above specified detection thresholds. We present computations of the lensing rates and amplifications as functions of the event durations (weeks to years), for a range of detection thresholds. We find that short events dominate the total rate and that long events tend to have large amplifications. For the current detection limit of K=17 mag, the total microlensing rate is 0.003 1/yr, and the rate of events with durations >1 yr is 0.001 1/yr. Recent GC proper motion studies have revealed the possible presence of one or two variable K-band sources very close to SgrA* (Genzel et al 97; Ghez et al 98). These sources may have attained peak brightnesses of K~15 mag, about 1.5-2 mag above the observational detection limits, and appear to have varied on a timescale of ~1 yr. This behavior is consistent with long-duration microlensing of faint stars by the BH. However, we estimate that the probability that such an event could have been detected during the course of the recent proper motion studies is \~0.5%. A ten-fold improvement in the detection limit and 10 yr of monthly monitoring would increase the total detection probability to ~20%. (Abridged)Comment: 29 p. with 5 figs. To appear in ApJ. Changed to reflect published version. Short discussions of solar metallicity luminosity function and star-star microlensing adde

    Emission-line Helium Abundances in Highly Obscured Nebulae

    Get PDF
    This paper outlines a way to determine the ICF using only infrared data. We identify four line pairs, [NeIII] 36\micron/[NeII] 12.8\micron, [NeIII]~15.6\micron /[NeII] 12.8\micron, [ArIII] 9\micron/[ArII] 6.9\micron, and [ArIII] 21\micron/[ArII] 6.9\micron, that are sensitive to the He ICF. This happens because the ions cover a wide range of ionization, the line pairs are not sensitive to electron temperature, they have similar critical densities, and are formed within the He+^+/H+^+ region of the nebula. We compute a very wide range of photoionization models appropriate for galactic HII regions. The models cover a wide range of densities, ionization parameters, stellar temperatures, and use continua from four very different stellar atmospheres. The results show that each line pair has a critical intensity ratio above which the He ICF is always small. Below these values the ICF depends very strongly on details of the models for three of the ratios, and so other information would be needed to determine the helium abundance. The [Ar III] 9\micron/[ArII] 6.9\micron ratio can indicate the ICF directly due to the near exact match in the critical densities of the two lines. Finally, continua predicted by the latest generation of stellar atmospheres are sufficiently hard that they routinely produce significantly negative ICFs.Comment: Accepted by PASP. Scheduled for the October 1999 issue. 11 pages, 5 figure

    The Spitzer View of Low-Metallicity Star Formation: II. Mrk 996, a Blue Compact Dwarf Galaxy with an Extremely Dense Nucleus

    Full text link
    (abridged) We present new Spitzer, UKIRT and MMT observations of the blue compact dwarf galaxy (BCD) Mrk 996, with an oxygen abundance of 12+log(O/H)=8.0. This galaxy has the peculiarity of possessing an extraordinarily dense nuclear star-forming region, with a central density of ~10^6 cm^{-3}. The nuclear region of Mrk 996 is characterized by several unusual properties: a very red color J-K = 1.8, broad and narrow emission-line components, and ionizing radiation as hard as 54.9 eV, as implied by the presence of the OIV 25.89 micron line. The nucleus is located within an exponential disk with colors consistent with a single stellar population of age >1 Gyr. The infrared morphology of Mrk 996 changes with wavelength. The IRS spectrum shows strong narrow Polycyclic Aromatic Hydrocarbon (PAH) emission, with narrow line widths and equivalent widths that are high for the metallicity of Mrk 996. Gaseous nebular fine-structure lines are also seen. A CLOUDY model requires that they originate in two distinct HII regions: a very dense HII region of radius ~580 pc with densities declining from ~10^6 at the center to a few hundreds cm^{-3} at the outer radius, where most of the optical lines arise; and a HII region with a density of ~300 cm^{-3} that is hidden in the optical but seen in the MIR. We suggest that the infrared lines arise mainly in the optically obscured HII region while they are strongly suppressed by collisional deexcitation in the optically visible one. The hard ionizing radiation needed to account for the OIV 25.89 micron line is most likely due to fast radiative shocks propagating in an interstellar medium. A hidden population of Wolf-Rayet stars of type WNE-w or a hidden AGN as sources of hard ionizing radiation are less likely possibilities.Comment: 48 pages, 13 figures, accepted for publication in the Astrophysical Journa

    The Brightest Lyα\alpha Emitter: Pop III or Black Hole?

    Get PDF
    CR7 is the brightest z=6.6 Lyαz=6.6 \, {\rm Ly}\alpha emitter (LAE) known to date, and spectroscopic follow-up by Sobral et al. (2015) suggests that CR7 might host Population (Pop) III stars. We examine this interpretation using cosmological hydrodynamical simulations. Several simulated galaxies show the same "Pop III wave" pattern observed in CR7. However, to reproduce the extreme CR7 Lyα{\rm Ly}\alpha/HeII1640 line luminosities (Lα/HeIIL_{\rm \alpha/He II}) a top-heavy IMF and a massive (>107M⊙>10^{7}{\rm M}_{\odot}) PopIII burst with age <2<2 Myr are required. Assuming that the observed properties of Lyα{\rm Ly}\alpha and HeII emission are typical for Pop III, we predict that in the COSMOS/UDS/SA22 fields, 14 out of the 30 LAEs at z=6.6z=6.6 with Lα>1043.3erg s−1L_{\alpha} >10^{43.3}{\rm erg}\,{\rm s}^{-1} should also host Pop III stars producing an observable LHeII>1042.7erg s−1L_{\rm He II}>10^{42.7}{\rm erg}\,{\rm s}^{-1}. As an alternate explanation, we explore the possibility that CR7 is instead powered by accretion onto a Direct Collapse Black Hole (DCBH). Our model predicts LαL_{\alpha}, LHeIIL_{\rm He II}, and X-ray luminosities that are in agreement with the observations. In any case, the observed properties of CR7 indicate that this galaxy is most likely powered by sources formed from pristine gas. We propose that further X-ray observations can distinguish between the two above scenarios.Comment: 6 pages, 4 figure

    HST's view of the youngest massive stars in the Magellanic Clouds

    Full text link
    Accurate physical parameters of newborn massive stars are essential ingredients to shed light on their formation, which is still an unsolved problem. The rare class of compact H II regions in the Magellanic Clouds (MCs), termed ``high-excitation blobs'' (HEBs), presents a unique opportunity to acquire this information. These objects (~ 4" to 10", ~ 1 to 3 pc, in diameter) harbor the youngest massive stars of the OB association/molecular cloud complexes in the MCs accessible through high-resolution near-IR and optical techniques. We present a brief overview of the results obtained with HST mainly on two HEBs, one in the LMC (N159-5) and the other in the SMC (N81).Comment: 5 pages, to appear in the Proceedings of the 41st ESLAB Symposium "The Impact of HST on European Astronomy", 29 May to 1 June 2007, ESTEC, Noordwijk, Netherlands; eds. Guido De Marchi and Duccio Macchett
    • 

    corecore