1,096 research outputs found

    Antibacterial effects and microbial quality of commonly consumed herbs in Dubai, United Arab Emirates

    Get PDF
    © All Rights Reserved. Herbal plants are traditionally known to exhibit antimicrobial properties and used in several countries as an alternative to modern pharmaceutical drugs. This study investigated the antibacterial properties and microbial quality of common herbs used in the United Arab Emirates (UAE). In total, 20 herb samples of parsley (Petroselinum crispum), basil (Ocimum basilicum), sage (Salvia officinalis), mint (Mentha spicata), and thyme (Thymus vulgaris) were randomly collected and analysed for the total aerobic bacteria count, yeasts and molds, Escherichia coli, Staphylococcus aureus, Salmonella and Pseudomonas aeruginosa by standard plate counting method using selective and differential culture media. Antibacterial effects of herbs on E.coli, S. aureus, Salmonella and P. aeruginosa were tested by disk diffusion method. The microbial analysis of herbs revealed that 50% of herb samples exceeded the world health organization (WHO) limit for the total aerobic bacteria count, and 75% exceeded the permissible limit for total molds and yeast count. 75% of herb samples were found contaminated with Escherichia coli and Salmonella spp, 65% with Shigella, and 10% exceeded the WHO permissible limit for Pseudomonas aeruginosa. However, all herb samples were found to be within the WHO acceptable limit for Staphylococcus aureus. All herbal extracts exhibited some form of antibacterial activity against E. coli, S. aureus, Salmonella and P. aeruginosa except for parsley, which had no inhibitory effect on S. aureus. However, the results of microbial quality suggest that most of the analysed herbs had unsafe microbial contamination that exceeded the World Health Organization permissible limits. Therefore, strict measures to reduce the risk of microbial contamination by applying Hazard Analysis and Critical Control Point (HACCP) need to be implemented on local and imported herbs prior to consumption

    Cosmic ray short burst observed with the Global Muon Detector Network (GMDN) on June 22, 2015

    Get PDF
    We analyze the short cosmic ray intensity increase ("cosmic ray burst": CRB) on June 22, 2015 utilizing a global network of muon detectors and derive the global anisotropy of cosmic ray intensity and the density (i.e. the omnidirectional intensity) with 10-minute time resolution. We find that the CRB was caused by a local density maximum and an enhanced anisotropy of cosmic rays both of which appeared in association with Earth's crossing of the heliospheric current sheet (HCS). This enhanced anisotropy was normal to the HCS and consistent with a diamagnetic drift arising from the spatial gradient of cosmic ray density, which indicates that cosmic rays were drifting along the HCS from the north of Earth. We also find a significant anisotropy along the HCS, lasting a few hours after the HCS crossing, indicating that cosmic rays penetrated into the inner heliosphere along the HCS. Based on the latest geomagnetic field model, we quantitatively evaluate the reduction of the geomagnetic cut-off rigidity and the variation of the asymptotic viewing direction of cosmic rays due to a major geomagnetic storm which occurred during the CRB and conclude that the CRB is not caused by the geomagnetic storm, but by a rapid change in the cosmic ray anisotropy and density outside the magnetosphere.Comment: accepted for the publication in the Astrophysical Journa

    The Underwater Photic Environment of Cape Maclear, Lake Malawi: Comparison Between Rock- and Sand-Bottom Habitats and Implications for Cichlid Fish Vision

    Get PDF
    Lake Malawi boasts the highest diversity of freshwater fishes in the world. Nearshore sites are categorized according to their bottom substrate, rock or sand, and these habitats host divergent assemblages of cichlid fishes. Sexual selection driven by mate choice in cichlids led to spectacular diversification in male nuptial coloration. This suggests that the spectral radiance contrast of fish, the main determinant of visibility under water, plays a crucial role in cichlid visual communication. This study provides the first detailed description of underwater irradiance, radiance and beam attenuation at selected sites representing two major habitats in Lake Malawi. These quantities are essential for estimating radiance contrast and, thus, the constraints imposed on fish body coloration. Irradiance spectra in the sand habitat were shifted to longer wavelengths compared with those in the rock habitat. Beam attenuation in the sand habitat was higher than in the rock habitat. The effects of water depth, bottom depth and proximity to the lake bottom on radiometric quantities are discussed. The radiance contrast of targets exhibiting diffused and spectrally uniform reflectance depended on habitat type in deep water but not in shallow water. In deep water, radiance contrast of such targets was maximal at long wavelengths in the sand habitat and at short wavelengths in the rock habitat. Thus, to achieve conspicuousness, color patterns of rock-and sand-dwelling cichlids would be restricted to short and long wavelengths, respectively. This study provides a useful platform for the examination of cichlid visual communication

    tt*-geometry on the big phase space

    Get PDF
    The big phase space, the geometric setting for the study of quantum cohomology with gravitational descendents, is a complex manifold and consists of an infinite number of copies of the small phase space. The aim of this paper is to define a Hermitian geometry on the big phase space. Using the approach of Dijkgraaf and Witten, we lift various geometric structures of the small phase space to the big phase space. The main results of our paper state that various notions from tt*-geometry are preserved under such liftings

    Frequency Content of Heart Sounds and Systolic Murmurs in Patients with Porcine Bioprosthetic Valves: Diagnostic Value for the Early Detection of Valvular Degeneration

    Get PDF
    The frequency content of heart sounds and murmurs in patients with implanted bioprosthetic valves may reveal evidence of degenerative changes before such changes are clinically apparent. An increased dominant frequency of the heart sound caused by a bioprosthetic valve in either the aortic or mitral positions suggests stiffening of the leaflets. While a musical systolic murmur of a bioprosthetic valve in the mitral position suggests flutter from a torn, insufficient leaflet, limited observations of musical systolic murmurs in the aortic position do not seem to indicate a degenerated valve

    Agents with inotropic properties for the management of acute heart failure syndromes. Traditional agents and beyond

    Get PDF
    Treatment with inotropic agents is one of the most controversial topics in heart failure. Initial enthusiasm, based on strong pathophysiological rationale and apparent empirical efficacy, has been progressively limited by results of controlled trials and registries showing poorer outcomes of the patients on inotropic therapy. The use of these agents remains, however, potentially indicated in a significant proportion of patients with low cardiac output, peripheral hypoperfusion and end-organ dysfunction caused by heart failure. Limitations of inotropic therapy seem to be mainly related to their mechanisms of action entailing arrhythmogenesis, peripheral vasodilation, myocardial ischemia and damage, and possibly due to their use in patients without a clear indication, rather than to the general principle of inotropic therapy itself. This review will discuss the characteristics of the patients with a potential indication for inotropic therapy, the main data from registries and controlled trials, the mechanism of the untoward effects of these agents on outcomes and, lastly, perspectives with new agents with novel mechanisms of action

    Singularities and Topology of Meromorphic Functions

    Full text link
    We present several aspects of the "topology of meromorphic functions", which we conceive as a general theory which includes the topology of holomorphic functions, the topology of pencils on quasi-projective spaces and the topology of polynomial functions.Comment: 21 pages, 1 figur

    Basil essential oil: Composition, antimicrobial properties, and microencapsulation to produce active chitosan films for food packaging

    Get PDF
    The essential oil (EO) from basil—Ocimum basilicum—was characterized, microencapsu-lated by vibration technology, and used to prepare a new type of packaging system designed to extend the food shelf life. The basil essential oil (BEO) chemical composition and antimicrobial activity were analyzed, as well as the morphological and biological properties of the derived BEO microcapsules (BEOMC). Analysis of BEO by gas chromatography demonstrated that the main component was linalool, whereas the study of its antimicrobial activity showed a significant inhibitory effect against all the microorganisms tested, mostly Gram-positive bacteria. Moreover, the prepared BEOMC showed a spheroidal shape and retained the EO antimicrobial activity. Finally, chitosan-based edible films were produced, grafted with BEOMC, and characterized for their physicochemical and biological properties. Since their effective antimicrobial activity was demonstrated, these films were tested as packaging system by wrapping cooked ham samples during 10 days of storage, with the aim of their possible use to extend the shelf life of the product. It was demonstrated that the obtained active film can both control the bacterial growth of the cooked ham and markedly inhibit the pH increase of the packaged food

    The secret world of shrimps: polarisation vision at its best

    Get PDF
    Animal vision spans a great range of complexity, with systems evolving to detect variations in optical intensity, distribution, colour, and polarisation. Polarisation vision systems studied to date detect one to four channels of linear polarisation, combining them in opponent pairs to provide intensity-independent operation. Circular polarisation vision has never been seen, and is widely believed to play no part in animal vision. Polarisation is fully measured via Stokes' parameters--obtained by combined linear and circular polarisation measurements. Optimal polarisation vision is the ability to see Stokes' parameters: here we show that the crustacean \emph{Gonodactylus smithii} measures the exact components required. This vision provides optimal contrast-enhancement, and precise determination of polarisation with no confusion-states or neutral-points--significant advantages. We emphasise that linear and circular polarisation vision are not different modalities--both are necessary for optimal polarisation vision, regardless of the presence of strongly linear or circularly polarised features in the animal's environment.Comment: 10 pages, 6 figures, 2 table

    Identifying a causal link between prolactin signaling pathways and COVID-19 vaccine-induced menstrual changes

    Get PDF
    COVID-19 vaccines have been instrumental tools in the fight against SARS-CoV-2 helping to reduce disease severity and mortality. At the same time, just like any other therapeutic, COVID-19 vaccines were associated with adverse events. Women have reported menstrual cycle irregularity after receiving COVID-19 vaccines, and this led to renewed fears concerning COVID-19 vaccines and their effects on fertility. Herein we devised an informatics workflow to explore the causal drivers of menstrual cycle irregularity in response to vaccination with mRNA COVID-19 vaccine BNT162b2. Our methods relied on gene expression analysis in response to vaccination, followed by network biology analysis to derive testable hypotheses regarding the causal links between BNT162b2 and menstrual cycle irregularity. Five high-confidence transcription factors were identified as causal drivers of BNT162b2-induced menstrual irregularity, namely: IRF1, STAT1, RelA (p65 NF-kB subunit), STAT2 and IRF3. Furthermore, some biomarkers of menstrual irregularity, including TNF, IL6R, IL6ST, LIF, BIRC3, FGF2, ARHGDIB, RPS3, RHOU, MIF, were identified as topological genes and predicted as causal drivers of menstrual irregularity. Our network-based mechanism reconstruction results indicated that BNT162b2 exerted biological effects similar to those resulting from prolactin signaling. However, these effects were short-lived and didn’t raise concerns about long-term infertility issues. This approach can be applied to interrogate the functional links between drugs/vaccines and other side effects
    corecore