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Abstract: The big phase space, the geometric setting for the study of
quantum cohomology with gravitational descendents, is a complex manifold
and consists of an infinite number of copies of the small phase space. The
aim of this paper is to define a Hermitian geometry on the big phase space.

Using the approach of Dijkgraaf and Witten [2], we lift various geometric
structures of the small phase space to the big phase space. The main results
of our paper state that various notions from tt∗-geometry are preserved
under such liftings.
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1. Introduction

The big phase space M∞ - the geometric arena for the study of quantum
cohomology and topological quantum field theories with gravitational de-
scendants - consists of an infinite number of copies of the small phase space
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M . Typically M is the cohomology ring of some smooth projective variety,
so

M∞ =
∏
n≥0

H∗(V ;C) .

The Poincaré pairing on H∗(V ;C) does not lift canonically to M∞ and
certain lifts of this pairing that can be defined on the big phase space are
highly degenerate [17]. Thus from a differential geometric point of view the
big phase space is hard to study. However, in a talk given at the 2006 ICM,
Liu [16] defined a non-degenerate metric on M∞ which is a natural lift of
the Poincaré pairing, namely

η̂ (Tn(γα), Tm(γβ)) = δmnη(γα, γβ) = δmnηαβ .

Note that this is defined in terms of the Poincaré pairing on M and a cer-
tain endomorphism T , which encapsulates the properties of the topological
recursion operator.

The aim of this paper is to study Hermitian structures on M∞ . This
will be achieved by coupling the above idea of Liu with original ideas of
Witten and Dijkgraaf [2], which relate two-point correlator functions on M
to two-point correlator functions on M∞ . As it turns out, this procedure
can be used to lift structures such as the tt∗-equations of Cecotti and Vafa
[1] from M to M∞. At the centre of the theory developed in this paper lies
the following result:

Theorem 1. Suppose that the tt∗-equations for a pseudo-Hermitian metric
h and Higgs field C are satisfied on M , so

∂DC = 0 , DR+ [C,C†] = 0 .

Then there exists a natural lift of the pseudo-Hermitian metric and Higgs
field, so that the tt∗-equations are satisfied on M∞ .

We also show that the Saito structure on T 1,0M lifts to a Saito structure
on T 1,0M∞ and that various other substructures on M , compatible with
the Saito structure or governed by the tt∗-equations (such as real Saito
structures, harmonic real Saito structures, harmonic potential real Saito
structures, DChk-structures and CV-structures), can be similarly lifted to
M∞.

1.1. Background. The study of Gromov-Witten invariants and intersec-
tion theory on the moduli space of curves has provided the impetus for
many recent developments in mathematics and mathematical physics. By
studying integrals of products of ψ-classes over moduli spaces

< τa1 . . . τan >g:=

∫
Mg,n

ψa11 . . . ψann

Witten [22] derived three basic equations: the string equation, the dilaton
equation and the topological recursion relation, and these, used recursively,
enabled the invariants to be constructed. Such invariants may be combined
into a generating function and it was conjectured by Witten, and later proved
by Kontsevich [13], that this is a certain solution of the KdV hierarchy.
These basic relations may then be generalized and raised to the status of
axioms of a topological quantum field theory (TQFT).
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Consider a smooth projective variety V withHodd(V ;C) = 0, {γ1 , . . . , γN}
a basis for the cohomology ring M := H∗(V ;C) and let

ηαβ = η(γα, γβ) =

∫
V
γα ∪ γβ

be the Poincaré pairing which defines a non-degenerate metric which may
be used to raise and lower indices. Following the conventions of Liu and
Tian [14, 15], a flat coordinate system {tα0 , α = 1 , . . . , N} may be found on

M so γα = ∂
∂tα0

, and in which the components of η are constant.

The big phase space consists of an infinite number of copies of the M ,
the small phase space, so

M∞ =
∏
n≥0

H∗(V ;C) .

The coordinate system {tα0 } induces, in a canonical way, a coordinate system

{tαn , n ∈ Z≥0 , α = 1 , . . . , N} on M∞. We denote by τn(γα) = ∂
∂tαn

(also ab-

breviated to τn,α ) the associated fundamental vector fields, which represent
various tautological line bundles over the moduli space of curves. A vector
field W =

∑
m,α fm,ατm(γ) is called a primary field if fm,α = 0 for m > 0

and a descendent field if f0,α = 0, for any α.
The descendent Gromov-Witten invariants

< τn1(γa1) . . . τnk(γak) >g

may be combined into generating functions, called prepotentials, labeled by
the genus g ,

Fg =
∑
k≥0

1

k!

∑
n1,α1...nk,αk

tα1
n1
. . . tαknk < τn1(γα1) . . . τnk(γαk) >g ,

and these in turn may be used to define k-tensor fields on the big phase
space, via the formula

(1) <<W1 · · ·Wk >>g=
∑

m1,α1,··· ,mk,αk

f1
m1,α1

· · · fkmkαk
∂kFg

∂tα1
m1 · · · ∂t

αk
mk

,

for any vector fieldsWi =
∑

m,α f
i
m,α

∂
∂tαm

. The tensor field (1) has a physical

interpretation as the k-point correlation function of the TQFT.
The basic relationships between these correlators may then be encapsu-

lated in the following:

Definition 2. Let t̃αn = tαn − δn,1δα,1 and let

S = −
∑
n,α

t̃αnτn−1(γα) ,

D = −
∑
n,α

t̃αnτn(γα)

be the string and dilaton vector fields respectively. Then the prepotentials
Fg satisfy the following relations:
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String Equation:

<< S >>g=
1

2
δg,0

∑
α,β

ηαβt
α
0 t
β
0 ;

Dilaton Equation:

<< D >>g= (2g − 2)Fg −
1

24
χ(V )δg,1 ;

Genus-zero Topological Recursion Relation:

<< τm+1(γα)τn(γβ)τk(γσ) >>0=<< τm(γα)γµ >>0<< γµτn(γβ)τk(γσ) >>0 .

The Topological Recursion Relation in turn leads to the generalized WDVV
equation:∑

µ,ν

∂3F0

∂tαm∂t
β
n∂t

µ
0

ηµν
∂3F0

∂tν0∂t
γ
k∂t

δ
l

=
∑
µ,ν

∂3F0

∂tαm∂t
γ
k∂t

µ
0

ηµν
∂3F0

∂tν0∂t
β
n∂tδl

.

This may be written more succinctly by introducing the so-called quantum
product between vector fields on the big phase space:

W1 ◦W2 =<<W1W2γ
σ >>0 γσ

where γσ = ησβγβ and (ηαβ) is the inverse of (ηαβ). With this the generalized
WDVV equation just becomes the associativity condition

(W1 ◦W2) ◦W3 =W1 ◦ (W2 ◦W3) .

By restricting such theories to primary vector fields with coefficients in
the small phase space one recovers a Frobenius manifold structure [4, 5] on
the small phase space, with

F0(t10 , . . . , t
N
0 ) = F0(t)|tαn=0 , n>0

becoming the prepotential for the Frobenius manifold and multiplication
given by

τ0,α • τ0,β =<< τ0,ατ0,βγ
σ >>0 |Mγσ.

Frobenius manifolds have turned out to be extremely ubiquitous structure
appearing, for example, via the work of K. Saito in singularity theory [20]
and in the theory of integrable systems, as well as in quantum cohomology
and mirror symmetry.

The underlying manifolds, when studying Frobenius manifolds, are actu-
ally complex manifolds, and the metric η is an holomorphic (non-degenerate)
metric, rather than a real-valued metric [4]. To define real objects one re-
quires an anti-holomorphic involution which may then in turn be used to
define Hermitian objects. This direction of research was started by Cecotti
and Vafa [1] in their study of tt∗-geometry (topological-anti-topological fu-
sion). The idea has since been developed by Dubrovin [6] (who studied the
integrability of tt∗-equations and developed the connection with plurihar-
monic maps), Hertling [11] (who connected tt∗-geometry with the work of
Simpson on Higgs bundles and generalizations of variations of Hodge struc-
tures) and by Sabbah [19] (this stressing the actual construction of these
objects). For a collection of articles on these subject, see [3].
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The historical development outlined above may be summarized in the
following diagram: TQFT

big phase space
[Witten, Dijkgraaf]


l

 Frobenius manifold
small phase space

[Dubrovin]

 ←→


tt∗ − geometry,TERP− structures

Hermitian−Higgs bundles
[Cecotti−Vafa, Dubrovin,

Hertling, Sabbah]


As the title indicates, the purpose of this paper is to introduce a Hermit-
ian structure on the big phase space and to study the properties of such
a structure, in particular its relationship with the standard, holomorphic,
structures. It turns out that one may define a full, infinite dimensional,
tt∗-geometry on the big phase space.

The key object in our treatment is a certain endomorphism of T 1,0M∞

introduced and studied in [14, 15],

(2) T (W) := τ+(W)− S ◦ τ+(W), W ∈ T 1,0M∞,

where

τ±

(∑
n,α

fn,ατn,α

)
:=
∑
n,α

fn,ατn±1,α .

With this the Topological Recursion Relation takes the compact form

(3) T (W1) ◦W2 = 0 W1 ,W2 ∈ T 1,0M∞ .

The Poincaré pairing is an holomorphic metric on the small phase space,
not the large phase space. An extension of this metric to the big phase
space was given in [17], namely < U ,V >=<< SUV >>0 , but this metric
is degenerate, a fact that follows easily from the use of the Topological
Recursion Relation. However, in [16] a non-degenerate holomorphic metric
on the big phase space was defined, namely

(4) η̂(W,V) =
∞∑
k=0

<< Sτk−(W)τk−(V) >>0 .

On using properties of the endomorphism T it is easy to show that

(5) η̂ (Tn(γα), Tm(γβ)) = δmnη(γα, γβ) = δmnηαβ .

This last formula may be seen as a lift, using the endomorphism T , of η,
defined on the small phase space, to the big phase space. Combined with a
basic result of Witten and Dijkgraaf [2] on the use of constitutive relations,
this gives a way to define Hermitian structures on M∞ starting with finite
dimensional structures on M .
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1.2. Structure of Paper. The rest of the paper is laid out as follows.
Section 2 is intended to fix notation. Here we briefly recall the basic facts
we need about the big phase space, tt∗-geometry and the relations between
tt∗-geometry and Frobenius manifolds (see Definitions 7 and 8).

In Section 3 we develop our main tool from this paper. We define the
natural lift of functions and vector fields from the small phase space M
to the big phase space M∞ (see Definition 11) and we study their basic
properties. The natural lift of a vector field from M to M∞ is a primary
vector field, whose coefficients in canonical flat coordinates are natural lifts
of the coordinates of the initial vector field. We study how natural lifts
of functions behave under derivations and in particular we show that any
function on M∞, which is a natural lift of a function on M , is annihilated
by the vector fields from the image of the operator T , defined by (2) (see
Lemma 12). Lemma 12 is a main tool for our computations from the next
sections. Finally, using the same ideas, we remark that any tensor field F
on M may be lifted to a tensor field F̂ on M∞, referred as the natural lift
of F (see Section 3.2). In the following sections we consider natural lifts of
specific tensor fields on M , and show they are part of tt∗-structures on M∞.

In Section 4 we assume that the small phase space comes with a real
structure k, compatible with η (i.e. h := η(·, k·) is a pseudo-Hermitian

metric). The natural lift k̂ of k is compatible with the natural lift η̂ of η
and we compute the Chern connection of the associated pseudo-Hermitian
metric ĥ = η̂(·, k̂·) on T 1,0M∞ and its curvature (see Lemmas 19 and 20) .
These computations will be used later on, in our study of the tt∗-equations
for the extended structures.

In Section 5 we lift the Higgs field C on M to a (non-commutative) Higgs

field Ĉ on M∞ (see Definition 21). The field Ĉ is not the natural lift of C (in
the sense of Section 3.2), but it reflects that 2-point functions lift trivially

to the big phase space (see Remark 22). The definition of Ĉ also mirrors the

properties of the Chern connection of ĥ and turns out to be very suitable
for the tt∗-geometry and the theory of Saito bundles on M∞. Other lifts of
the multiplication from the small phase space to the big phase space (e.g.
the quantum multiplication mentioned above or the Liu’s multiplication �,
see Remark 4), appear in the literature, but they are not so well suited for
the tt∗-geometry on the big phase space.

In Section 6 we gather all lifted structures defined in the previous sec-
tions and we prove that the basic notions from the theory of Frobenius
manifolds and tt∗-geometry are preserved under these lifts. More precisely,
let (T 1,0M,∇, η, C,R0, R∞) be the Saito bundle associated to the Frobe-
nius manifold (M, •, η, E), where ∇ is the Levi-Civita connection of η,
CX(Y ) = X • Y is the Higgs field, R0 = CE and R∞ = ∇E, where E is the
Euler field. Assume that k is a real structure on M , compatible with η, and
let h := η(·, k·) be the associated pseudo-Hermitian metric. On T 1,0M∞

we consider ∇̂, η̂, Ĉ, R̂0, R̂∞, k̂, ĥ, where ∇̂ is a flat connection on T 1,0M∞,
defined by the condition that all vector fields Tn(τ0,α) (n ≥ 0, 1 ≤ α ≤ N)

are ∇̂-parallel, η̂, R̂0, R̂∞, k̂ and ĥ are natural lifts of η, R0, R∞, k, h,
and Ĉ is the lifted (non-commutative) Higgs field, as defined in Section 5

(see Definition 21). In a first stage we show that (T 1,0M, ∇̂, η̂, Ĉ, R̂0, R̂∞)
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is a Saito bundle. Then we prove our main results from this paper: namely,
we assume that various compatibility conditions between the real structure
k and the Saito structure (∇, η, C,R0, R∞) hold (giving rise to a harmonic
Higgs bundle, a real Saito bundle, a harmonic potential real Saito bundle,
a DChk-bundle or a CV-bundle), and we prove that all such conditions are
inherited by the lifted structures on the big phase space (see Sections 6.2,
6.3, 6.4).

Acknowledgements. Part of this work was carried while L.D. was a
visitor, during April-June 2012, at Institut des Hautes Etudes Scientifiques
(France). Hospitality, excellent working conditions and financial support
are acknowledged. This work is also partially supported by a grant of the
Romanian National Authority for Scientific Research, CNCS-UEFISCDI,
project no. PN-II-ID-PCE-2011-3-0362.

2. Preliminary material

This section is intended to recall basic facts we need from the geome-
try of the big phase space, theory of Frobenius manifolds and tt∗-geometry.
The manifolds we consider are complex and the vector bundles holomorphic.
For a complex manifold M , we denote by T 1,0M the holomorphic tangent
bundle of M , by TM , T 1,0

M , C∞(M), C∞(M,R) the sheaf of holomorphic
vector fields, vector fields of type (1, 0) and complex, respectively real val-
ued smooth functions on M . Vector fields on the small phase space will be
denoted by X, Y , Z, etc, while vector fields on the big phase space will be
usually denoted by U ,V, W. (Unless otherwise specified, vector fields are of
type (1, 0), not necessarily holomorphic, and functions are smooth and com-
plex valued). For an holomorphic bundle V → M , Ω1(M,V ), Ω1,0(M,V )
and Ω0,1(M,V ) will denote, respectively, the sheaves of holomorphic 1-forms,
forms of type (1, 0) and forms of type (0, 1) on M , with values in V .

2.1. The geometry of the big phase space. The material in this section
is taken directly from [14, 15, 16] and no proofs will be given. The first lemma
shows that the string vector field behaves like a unit for the quantum product
restricted to primary fields, and the second lemma derives properties of a
naturally defined covariant derivative on the big phase space.

Lemma 3. For all primary vector fields W and for all vectors fields U ,V
on M∞,

S ◦W = W ,

S ◦ U ◦ V = U ◦ V .

Remark 4. Besides the quantum product, there are also other interesting
multiplications on the big phase space, see e.g. [16]. The multiplication

Tn(U) � Tm(V) = δmnT
n(U ◦ V),

where U and V are primary vector fields, is commutative, associative, with
unit field

Ŝ =
∑
k≥0

T k(S ◦ S).



8 LIANA DAVID AND IAN A.B. STRACHAN

One may also show that the metric η̂ and the multiplication � are compatible
in the sense that

η̂(W1 �W2,W3) = η̂(W1,W2 �W3) .

However one may check that (M, �, Ŝ) is not an F -manifold [10].

Lemma 5. Let ∇ be the covariant derivative defined by

∇VW =
∑
m,α

V (fm,α) τm(γα)

where W =
∑

m,α fm,ατm(γα) and V is an arbitrary vector field on M∞.
Then

W <<W1 · · ·Wk >>0 =
k∑
i=1

<<W1 · · ·Wi−1(∇WWi)Wi+1 · · ·Wk >>0

+ <<WW1 · · ·Wk >>0 ,(6)

for any vector fields W,Wi on M∞, and

∇V
(
T k(W)

)
= T k (∇VW)− T k−1 (V ◦W) ,

[Tn(γα), Tm(γβ)] = 0 , n,m ≥ 1 ,

[Tn(γα), γβ] = Tn−1 (γα ◦ γβ) , n ≥ 1 .

Thus the vector fields {Tn(γα) , n ∈ Z≥0 , α = 1 , . . . , N} form a frame for
T 1,0M∞ , but not a coordinate frame, due to the last of the above equations.

Remark 6. The connection ∇ as defined above induces an holomorphic
connection on T 1,0M in the obvious way (if X and Y are vector fields on
T 1,0M then ∇XY is also a vector field on T 1,0M), for which {τ0,α} are
flat. In particular, the induced connection coincides with the Levi-Civita
connection of η, and will be also denoted by ∇. It will be clear from the
context when ∇ acts on T 1,0M or T 1,0M∞.

2.2. Frobenius manifolds and tt∗-geometry. In this section we recall
the basic definitions from Frobenius manifolds and tt∗-geometry, see e.g.
[11, 19]. We begin with the definition of Saito bundles and we explain their
relation with Frobenius manifolds. Then we add a real structure on a Saito
bundle and we define various compatibility conditions between the Saito
structure and the real structure. We work in the holomorphic category:
all manifolds, bundles, tensor fields, connections etc from this section are
holomorphic, unless otherwise stated.

Definition 7. A Saito bundle (of weight w ∈ C) is a vector bundle

(π : V →M,∇, g, C,R0, R∞)

endowed with a connection ∇, a metric g, a vector valued 1-form C ∈
Ω1(M,EndV ) and two endomorphisms R0 and R∞, such that the follow-
ing conditions are satisfied:

(7) R∇ = 0, d∇C = 0, ∇g = 0, C ∧ C = 0, C∗ = C,
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and

∇R0 + C = [C,R∞], [R0, C] = 0, R∗0 = R0;

∇R∞ = 0, R∗∞ +R∞ = −wIdV .

Above d∇C and C ∧ C are End(V )-valued 2-forms, defined by

(d∇C)X,Y := ∇X (CY )−∇Y (CX)− C[X,Y ],

(C ∧ C)X,Y := CXCY − CY CX

for any X,Y ∈ TM , and the superscript “∗” denotes the g-adjoint (in par-
ticular, C∗X ∈ End(V ) is the g-adjoint of CX ∈ End(V )). Moreover, [R0, C]
is an End(V )-valued 1-form, which, on X ∈ T 1,0M , is equal to [R0, CX ].

A Frobenius manifold (M, •, e, η, E) defines a Saito structure (∇, η, C,R0, R∞)
on T 1,0M , where ∇ is the Levi-Civita connection of η, CXY := X •Y is the
Higgs field, R0 := CE is the multiplication by the Euler field and R∞ := ∇E.
The weight of this Saito structure is d, where LE(g) = −dg. Conversely,
any Saito bundle whose rank is equal to the dimension of the base, together
with a suitably chosen parallel section (usually called primitive homoge-
neous), gives rise to a Frobenius structure on the base of the bundle [20]
(see also [18]).

We now add a real structure to a Saito bundle and define various com-
patibility conditions, which give rise to the notions of real Saito bundles,
harmonic real Saito bundles and harmonic potential real Saito bundles.

Definition 8. 1) A real Saito bundle is a Saito bundle

(π : V →M,∇, g, C,R0, R∞)

together with a real structure k : V → V (i.e. k is a fiber-preserving smooth
anti-linear involution) such that g, k are compatible (i.e. h := g(·, k·) is
a pseudo-Hermitian metric) and g, h are also compatible (i.e. D(g) = 0,
where D is the Chern connection of h).

2) A harmonic real Saito bundle is a real Saito bundle

(π : V →M,∇, g, C,R0, R∞, k)

such that (V,C, h = g(·, k·)) is a harmonic Higgs bundle, i.e. the tt∗-
equations

(∂DC)Z1,Z2 = 0, RDZ1,Z̄2
+ [CZ1 , C

†
Z̄2

] = 0, Z1, Z2 ∈ T 1,0M

hold, where

(∂DC)Z1,Z2 := DZ1(CZ2)−DZ2(CZ1)− C[Z1,Z2],

C† ∈ Ω0,1(M,EndV ) denotes the h-adjoint of C ∈ Ω1,0(M,EndV ) and D is
the Chern connection of h.

3) A harmonic potential real Saito bundle is a harmonic real Saito bundle

(π : V →M,∇, g, C,R0, R∞, k)
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together with a smooth g-self adjoint endomorphism A of V (called the po-
tential) such that the following conditions hold:

3a) D(1,0)A = C, where D is the Chern connection of h := g(·, k·);

3b) D(1,0) = ∇− [A†, C], where A† is the h-adjoint of A;

3c) the endomorphism R∞ + [A†, R0] is h-self adjoint.

A Frobenius manifold with a suitably chosen real structure and a (not
necessarily holomorphic) endomorphism of the tangent bundle gives rise to
the notion of harmonic Frobenius manifold, defined as follows.

Definition 9. A harmonic Frobenius manifold is a complex Frobenius man-
ifold (M, ◦, e, g, E) such that LE(g) = dg, with d ∈ R, together with a real
structure k on T 1,0M and a smooth endomorphism A of T 1,0M (called the
potential of the Frobenius manifold), such that the associated Saito bundle
(T 1,0M,∇, g, C,R0 = CE , R∞ = ∇E) is a harmonic potential real Saito
bundle, with real structure k and potential A.

One may show that any harmonic potential real Saito bundle whose rank
is equal to the dimension of the base, together with a parallel primitive real
homogeneous section, gives rise to a harmonic Frobenius structure on the
base of the bundle. For our purposes, we do not need this construction. For
a precise statement and proof, see Corollary 1.31 of [19].

Remark 10. As will be proved in Section 6.1, the tangent bundle of the
big phase space comes naturally equipped with a Saito structure, obtained
by lifting the Saito structure of the small phase space. Thus it is natural
to look for tt∗-structures on the big phase space, compatible with this lifted
Saito structure. For this reason, in Definition 8 above only notions from tt∗-
geometry, which admit an underlying Saito structure, were recalled. It is
worth to remark however that other important notions exist in tt∗-geometry,
which are build as an enrichment of the notion of harmonic Higgs bundle,
rather than Saito bundle, and do not necessarily admit an underlying Saito
structure. For example, in the language of [11], one may consider the notion
of DChk-bundle, which is a harmonic Higgs bundle (V,C, h), together with
a real structure k, such that g := h(·, k·) is a symmetric (holomorphic) met-
ric, compatible with h. A richer notion is the notion of CV-bundle, which is,
by definition, a DChk-bundle (V,C, h, k), together with two endomorphisms
U and Q (the latter not necessarily holomorphic), satisfying the following
conditions:

i) for any X ∈ T 1,0M , [CX ,U ] = 0;

ii) for any X ∈ T 1,0M ,

DXU + [CX , Q]− CX = 0

and

DXQ− [CX , kUk] = 0
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(as usual, D denotes the Chern connection of h).

iii) Q is h-self adjoint and g-skew adjoint.

Such structures arise naturally in singularity theory [11]. While our pri-
mary interest is in the structures presented in Definition 8, it turns out that
the notions of DChk and CV -structures are preserved under our liftings to
the big phase space. These facts will be referred to throughout the course
of this paper, but no proofs will be given.

3. Natural lifts from M to M∞

In this section we describe a canonical way to lift tensor fields from the
small phase space M to the big phase space M∞. This will be our main tool
in the construction of a Hermitian geometry on the big phase space. The
idea is an adoption of the use of constitutive equations and was originally
introduced by Dijkgraaf and Witten [2]. We preserve the notation from the
Introduction and Section 2.1.

3.1. Natural lifts of functions and vector fields.

Definition 11. i) Let f be a function on M . The function f̂ on M∞,
defined by

(8) f̂(tαn) := f
(
ηαβ << τ0,1τ0,β >>0

)
,

is called the natural lift of f .

ii) Let X ∈ T 1,0
M a vector field on M , given in flat coordinates {tα0 } by

X =
N∑
α=1

fατ0,α.

The primary field

X̂ :=
N∑
α=1

f̂ατ0,α

is called the natural lift of X to M∞.

We now develop some simple properties of natural lifts, which will be
useful in the next sections.

Lemma 12. For any W ∈ T 1,0
M∞ and f ∈ C∞(M),

(9) W(f̂) =

[
∂f

∂tβ0

]∧
ηβσ << τ0,1τ0,σW >>0 .

In particular,

(10) T (W)(f̂) = 0.

Proof. Consider the vector valued function

~u := (u1, · · · , uN ), uα := ηαβ << τ0,1τ0,β >>0 .
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From (8), f̂ = f ◦ ~u and

(11)
∂f̂

∂tαn
=

[
∂f

∂tβ0

]∧
∂uβ

∂tαn
=

[
∂f

∂tβ0

]∧
ηβσ << τ0,1τ0,στn,α >>0 ,

where we used (6). Relation (9) follows. Relation (10) follows from (9), the
Topological Recusion Relation (3) and the definition of the quantum prod-
uct.

�

Remark 13. In computations we shall often use

W(f̂) =

[
∂f

∂tβ0

]∧
ηβσ << τ0,1τ0,σ,W >>0 ,

for any f ∈ C∞(M) and W ∈ T 0,1
M∞ , and also

(12) T (W)(f̂) = 0, ∀f ∈ C∞(M), ∀W ∈ T 1,0
M∞ .

These follow by taking conjugations of (9) and (10), and using that conju-
gations commute with natural lifts of functions.

3.2. Natural lifts of arbitrary tensor fields. Using the above ideas one
may lift any tensor field, from M to M∞, in the following way. We first
extend componentwise the endomorphism T , defined by (2), to products
T 1,0M∞ × · · · × T 1,0M∞ (p ≥ 0 factors; when p = 0 the product reduces to
the trivial bundle M∞ × C and T is the identity operator). Similarly, we
define a map

(13) ∧ : T 1,0M × · · · × T 1,0M → T 1,0M∞ × · · · × T 1,0M∞,

(p-factors in both products) which, for p ≥ 1, is given by

(X1, · · · , Xp)
∧ := (X̂1, · · · , X̂p).

For p = 0, the map (13) is defined on C∞(M) and is just the natural lift of
functions. With this preliminary notation, let F be a (p, q)-tensor field on
M , i.e. a map

F : T 1,0M × · · · × T 1,0M → T 1,0M × · · · × T 1,0M,

(p-factors in the left hand side, q in the right hand side), which is C∞(M)-
linear (in all arguments) or C∞(M,R)-linear and complex anti-linear (in all

arguments). The natural lift F̂ of F is a tensor field of the same type on
M∞, defined by

F̂
(
Tn1(τ0,α1), · · · , Tnp(τ0,αp)

)
= δn1,··· ,npT

ni
([
F(τ0,α1 , · · · , τ0,αp)

]∧)
,

where δn1,··· ,np = 0 unless all ni are equal and δn···n = 1.

Remark 14. From the definition of F̂ , for any vector fields X1, · · · , Xp ∈
T 1,0
M ,

(14) F̂
(
Tn1(X̂1), · · · , Tnp(X̂p)

)
= δn1,··· ,npT

ni
(
[F(X1, · · · , Xp)]

∧) .
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Example 15. i) Liu’s metric (5) (see [17]) already mentioned in the Intro-
duction is the natural lift of the Poincaré metric η:

(15) η̂ (Tn(τ0,α), Tm(τ0,β)) = δmnη(τ0,α, τ0,β), ∀m,n

the right hand side of the above expression being constant, hence coincides
with its natural extension.

ii) The natural lift Â of an endomorphism A of T 1,0M (viewed as a (1, 1)-
tensor field) is given by

Â (Tm(τ0,α)) = Tm
(
[A(τ0,α)]∧

)
.

Note that [A,B]∧ = [Â, B̂], for any endomorphisms A and B of T 1,0M.

4. The lifted pseudo-Hermitian metric

We now consider a real structure k : T 1,0M → T 1,0M compatible with η,
i.e. h := η(·, k·) is a pseudo-Hermitian metric. It is easy to check that its

natural lift k̂ : T 1,0M∞ → T 1,0M∞ is a real structure, compatible with the
natural lift η̂ of η, and that k̂ and η̂ give rise to a pseudo-Hermitian metric
ĥ = η̂(·, k̂·), which is the natural lift of h. In this section we compute the

Chern connection and the curvature of ĥ. For completeness of our exposition,
we recall the expression of ĥ.

Definition 16. The natural lift ĥ of h to M∞ is defined by

(16) ĥ (Tn(τ0,α), Tm(τ0,β)) = δmn [h(τ0,α, τ0,β)]∧ , ∀m,n.

More generally,

(17) ĥ(Tn(X̂), Tm(Ŷ )) = δmn [h(X,Y )]∧ , ∀X,Y ∈ T 1,0
M .

To simplify the expression of the Chern connection of ĥ and other expres-
sions we define the functions (following Getzler [7])

(18) Mγ
α := ηγσ << τ0,1τ0,στ0,α >>0 , 1 ≤ α, γ ≤ N

and study some of their basic properties (see Remark 17 and Lemma 18).

Remark 17. With the above notation, relation (9) implies

(19) τ0,α(f̂) =

[
∂f

∂tβ0

]∧
Mβ
α , ∀f ∈ C∞(M).

Notice that relation (19) implies Mσ
α = τ0,α(f̂σ), where fσ(t10, · · · , tN0 ) = tσ0 .

It also follows from the String Equation that

Mσ
α |M = δσα .

In what follows we shall use the derivatives of the functions Mσ
α along

vector fields from the image of the operator T . We will compute these
derivatives now, and then compute the Chern connection of ĥ.
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Lemma 18. The following relations hold: for any 1 ≤ α, β, σ ≤ N ,

T (τ0,β)(Mσ
α ) = (τ0,α ◦ τ0,β)(f̂σ) = ησµ << τ0,1τ0,µ(τ0,α ◦ τ0,β) >>0

and
T q(τ0,β)(Mσ

α ) = 0, ∀q ≥ 2.

Proof. We use Mσ
α = τ0,α(f̂σ) (from the previous remark) and that f̂σ is

annihilated by T q(τ0,β) for any q ≥ 1 (see Lemma 12). Recall, also, that

[T q(τ0,β), τ0,α] = T q−1(τ0,α ◦ τ0,β),

(see Lemma 5). We obtain: for any q ≥ 1,

T q(τ0,β) (Mσ
α ) = T q(τ0,β)τ0,α(f̂σ)

= [T q(τ0,β), τ0,α](f̂σ) = T q−1 (τ0,α ◦ τ0,β) (f̂σ),

which vanishes when q ≥ 2. When q = 1, we obtain

T (τ0,β) (Mσ
α ) = (τ0,α ◦ τ0,β)(f̂σ) = ησµ << τ0,1τ0,µ(τ0,α ◦ τ0,β) >>0

where in the last equality we used (9), with f := fσ andW = τ0,α ◦ τ0,β. �

From the above lemma, T q(τ0,β)(Mσ
α ) is symmetric in α and β .

Lemma 19. Let D be the Chern connection of h. The Chern connection D̂
of ĥ is given by: for any n ≥ 0 and 1 ≤ α, β ≤ N ,

(20) D̂τ0,α (Tn(τ0,β)) = Mσ
αT

n
([
Dτ0,σ(τ0,β)

]∧)
and

(21) D̂T (W) (Tn(τ0,α)) = 0, ∀W ∈ T 1,0
M∞ .

Proof. By definition, the Chern connection D̂ satisfies

(22) W1ĥ(W2,W3) = ĥ(D̂W1W2,W3), ∀W1,W2,W3 ∈ TM∞ .
Let W1 := τ0,α, W2 := Tn(τ0,β), W3 := Tm(τ0,γ). With these arguments,
equation (22) becomes

(23) δnmτ0,α(ĥβγ) = ĥ
(
D̂τ0,α (Tn(τ0,β)) , Tm(τ0,γ)

)
,

where, to simplify notation, we defined hβγ := h(τ0,β, τ0,γ). But from (19),

(24) τ0,α(ĥβγ) =

[
∂hβγ
∂tσ0

]∧
Mσ
α = Mσ

α

[
h
(
Dτ0,σ(τ0,β), τ0,γ

)]∧
.

Combining (23) with (24) we obtain: ∀n,m,α, β,

M r
αĥ
(
Tn
([
Dτ0,r(τ0,β)

]∧)
, Tm(τ0,γ)

)
= ĥ

(
D̂τ0,α (Tn(τ0,β)) , Tm(τ0,γ)

)
.

From the non-degeneracy of ĥ, we obtain (20).

We now prove (21). WithW2 andW3 as above, ĥ(W2,W3) is the natural
extension of δmnhβγ . Thus, if W1 = T (W) in the image of T , it annihilates

ĥ(W2,W3) (see Lemma 12) and from (22),

(25) ĥ
(
D̂T (W) (Tn(τ0,β)) , Tm(τ0,γ)

)
= 0.

Using the non-degeneracy of ĥ again, we obtain (21).
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�

From Lemmas 12 and 19, the covariant derivatives with respect to D̂ of
vector fields Tn(X̂), in directions from the image of T , vanish:

(26) D̂T (W)

(
Tn(X̂)

)
= 0, ∀W ∈ TM∞ , X ∈ TM .

This fact will be used often in the computations from the next sections.

Lemma 20. The curvature D̂R of D̂ is related to the curvature DR of D by:

(27) D̂Rτ0,α,τ0,β (T r(τ0,γ)) = Mσ
αM

ν
βT

r
([
DRτ0,σ ,τ0,ν (τ0,γ)

]∧)
,

where 1 ≤ α, β, γ ≤ N and r ≥ 0. If m or n is bigger than zero,

D̂R
Tn(τ0,α),Tm(τ0,β)

(T r(τ0,γ)) = 0.

Proof. For any W1,W2,W3 ∈ TM∞ ,

D̂RW1,W̄2
(W3) = D̂W1D̂W̄2

(W3)− D̂W̄2
D̂W1(W3)− D̂[W1,W̄2](W3)

= −∂̄W̄2
D̂W1(W3),

where we used

[W1, W̄2] = 0, D̂W̄2
(W3) = ∂̄W̄2

(W3) = 0

because Wi are holomorphic and D̂ is a Chern connection (hence its (0, 1)-
part is the ∂̄ operator). Let

W1 := Tn(τ0,α), W2 := Tm(τ0,β), W3 := T r(τ0,γ).

With these arguments,

(28) D̂R
Tn(τ0,α),Tm(τ0,β)

(T r(τ0,γ)) = −∂̄
Tm(τ0,β)

D̂Tn(τ0,α) (T r(τ0,γ)) .

From Lemma 19, if n > 0,

D̂R
Tn(τ0,α),Tm(τ0,β)

(T r(τ0,γ)) = 0.

If n = 0, then, again from Lemma 19,

D̂R
τ0,α,Tm(τ0,β)

(T r(τ0,γ)) = −∂
Tm(τ0,β)

(
Mσ
αT

r
([
Dτ0,σ(τ0,γ)

]∧))
= −Mσ

αT
r
(
∂̄
Tm(τ0,β)

([
Dτ0,σ(τ0,γ)

]∧))
(29)

where in the last relation we used that T and Mσ
α are holomorphic. We

define functions fµσγ on M by the formula

(30) Dτ0,σ(τ0,γ) = fµσγτ0,µ .

With this notation, relation (29) becomes

(31) D̂R
τ0,α,Tm(τ0,β)

(T r(τ0,γ)) = −
{
Mσ
αT

m(τ0,β)
(
f̂µσγ
)}

T r(τ0,µ).

We now distinguish two cases:

1) If m = 0, then, from Remark 13,

τ0,β

(
f̂µσγ
)

=

[
∂fµσγ

∂tν0

]∧
Mν
β
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and

D̂Rτ0,α,τ0,β (T r(τ0,γ)) = −Mσ
αM

ν
β

[
∂fµσγ

∂tν0

]∧
T r(τ0,µ)

= Mσ
αM

ν
βT

r
([
DRτ0,σ ,τ0,ν (τ0,γ)

]∧)
,

which implies (27).

2) If m > 0, the right hand side of (31) is zero, because f̂sσγ is annihilated

by Tm(τ0,β) (again from Remark 13).
�

One of the fundamental properties of the pseudo-Hermitian metric h is
that it must be compatible with the holomorphic metric η , namely Dη = 0
[1, 6] . It will turn out that the lifted metrics satisfy this same condition on
the big phase space (see Section 6.3).

5. The lifted Higgs field

In this section we lift the Higgs field from the small phase space to the big
phase space. Unlike other types of tensor fields involved in our constructions,
the Higgs field on the big phase space is not obtained via the general lifting
procedure developed in Section 3.2. One motivation for its definition is
explained in Remark 22.

Definition 21. Let CXY = X •Y be the Higgs field on M . The Higgs field
Ĉ on M∞ is defined by

(32) Ĉτ0,α (Tn(τ0,β)) = Mσ
αT

n
([
Cτ0,σ (τ0,β)

]∧)
and

(33) ĈTm(τ0,α) (Tn(τ0,β)) = 0,

for any n ≥ 0, m ≥ 1 and 1 ≤ α, β ≤ N.

We make some comments on the above definition.

Remark 22. The Higgs field Ĉ, restricted to primary vector fields, gives
the quantum product. This fact relies on a property proved in [2], namely
that 2-point functions << τ0,ατ0,β >>0 on M∞ are natural lifts of their

restrictions to M . More precisely, to prove that Ĉτ0,α(τ0,β) = τ0,α ◦ τ0,β, we
notice that

<< τ0,ατ0,βτ0,γ >>0= τ0,γ (<< τ0,ατ0,β >>0)

= τ0,γ (<< τ0,ατ0,β >>0 |M )∧ =

(
∂

∂tσ0
<< τ0,ατ0,β >>0 |M

)∧
Mσ
γ ,

for any 1 ≤ α, β, γ ≤ N . We obtain:

(34) << τ0,ατ0,βτ0,γ >>0= (<< τ0,ατ0,βτ0,σ >>0 |M )∧Mσ
γ .

In particular, the right hand side of (34) is symmetric in α and γ and thus

<< τ0,ατ0,βτ0,γ >>0= (<< τ0,γτ0,βτ0,σ >>0 |M )∧Mσ
α .



tt∗-GEOMETRY ON THE BIG PHASE SPACE 17

From the above relation we then obtain

τ0,α ◦ τ0,β =<< τ0,ατ0,βτ0,γ >>0 η
γντ0,ν

= Mσ
α (<< τ0,γτ0,βτ0,σ >>0 |Mηγντ0,ν)∧

= Mσ
α

[
Cτ0,σ(τ0,β)

]∧
= Ĉτ0,α(τ0,β),

as claimed. This is represented in Figure 1.

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

M

M∞

TpM

TpM
∞

�X

�X

���
Y

6

���
Y

XXXz
X • Y

XXXz
X ◦ Y

τ0,α ◦ τ0,β = Mσ
α [τ0,σ • τ0,β]∧

Figure 1: The lifting of the multiplication from M to M∞ .

Remark 23. Note also that Ĉ mirrors the properties of the Chern connec-
tion D̂ given in Lemma 19. Thus, each term in the second tt∗-equation

D̂RZ1,Z̄2
+ [ĈZ1 , Ĉ

†
Z̄2

] = 0,

behaves in the same manner. Owing to this, the second tt∗-equation is
inherited from M to M∞ (we shall give details of this fact in Section 6.2).
This would not occur if Liu’s multiplication � or the quantum product ◦
were used, instead of Ĉ.

Lemma 24. The metric η̂ is invariant with respect to Ĉ, i.e.

(35) η̂(ĈW1(W2),W3) = η̂(W2, ĈW1(W3)),

for any vector fields W1,W2,W3 ∈ T 1,0
M∞ .

Proof. From the definition of Ĉ both sides of (35) are zero, when W1 ∈
Im(T ). When W1 = τ0,α,

η̂(Ĉτ0,αT
n(τ0,β), Tm(τ0,γ)) = δnmM

σ
α

[
η
(
Cτ0,σ(τ0,β), τ0,γ

)]∧
which is symmetric in the pairs (n, β) and (m, γ), because η is symmetric
and invariant with respect to C. �
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6. The lifted tt∗-bundles

In this section we consider various compatibility conditions (see Section
2.2) on the structures on the small phase space and we show that they are
inherited by the lifted structures on the big phase space. We preserve the
notation from the previous sections. Thus, the small phase space M has a
metric η (the Poincaré pairing), a multiplication • (with Higgs field C) and a
real structure k which is compatible with η. Recall that k compatible with η
means that h := η(·, k·) is a pseudo-Hermitian metric. We denote by D the
Chern connection of h. Since M is a Frobenius manifold, (∇, η, C,R0, R∞)
is a Saito structure on T 1,0M , where ∇ is the Levi-Civita connection of
η (which is flat and ∇(τ0,α) = 0, for any 1 ≤ α ≤ N), R0 = CE is the
multiplication by the Euler field and R∞ = ∇E.

The lifted structures were defined in the previous sections and will be
denoted as before, η̂, Ĉ, k̂ and ĥ (with Chern connection D̂). We shall also

consider the natural lifts R̂0 and R̂∞, which are endomorphisms on T 1,0M∞.
Finally, we need to define a flat connection ∇̂ on the bundle T 1,0M∞. The
connection ∇̂ will be part of a Saito structure on the big phase space and is
defined as follows.

Definition 25. The connection ∇̂ on T 1,0M∞ is defined by the condition
that all vector fields Tm(τ0,α), (m ≥ 0, α = 1, · · · , N) are ∇̂-parallel.

Note that the ∇̂-covariant derivatives of vector fields Tm(X̂), in directions
from the image of T , vanish, i.e.

(36) ∇̂T (W)

(
Tm(X̂)

)
= 0, ∀W ∈ TM∞ , X ∈ TM , m ≥ 0.

This follows from the above definition and Lemma 12. Note also that the
two connections ∇̂ and ∇ (the latter defined in Lemma 5) are connected by
the relation(

∇̂Tn(τ0,α) −∇Tn(τ0,α)

)
(Tm(τ0,β)) = δn,0T

m−1(τ0,α ◦ τ0,β),

though we will not have to use this result.
Since the various notions from tt∗-geometry are built as an enrichment of

the notion of Saito bundle, we begin by proving that the lifted data provides
a Saito structure on the big phase space.

6.1. Lifted Saito bundles.

Theorem 26. The data (∇̂, η̂, Ĉ, R̂0, R̂∞) is a Saito structure on T 1,0M∞.

To prove Theorem 26, we need to check that (∇̂, η̂, Ĉ, R̂0, R̂∞) satisfies
all defining conditions for Saito structures (see Definition 7). In particular,

in Lemma 27 we show that the potentiality condition d∇̂Ĉ = 0 holds and in
Lemma 28 we show that the relation

∇̂(R̂0) + Ĉ = [Ĉ, R̂∞]

holds. The remaining conditions from Definition 7 can be checked easily,
and we omit the proofs.

Lemma 27. The equality d∇̂Ĉ = 0 holds.
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Proof. From the various definitions it follows that

(d∇̂Ĉ)T p(τ0,α),T q(τ0,β) (Tm(τ0,γ))

= ∇̂T p(τ0,α)

(
ĈT q(τ0,β)

)
(Tm(τ0,γ))− ∇̂T q(τ0,β)

(
ĈT p(τ0,α)

)
(Tm(τ0,γ))

− Ĉ[T p(τ0,α),T q(τ0,β)] (Tm(τ0,γ)) .

When p, q ≥ 1, both ĈT p(τ0,γ) and ĈT q(τ0,β) are trivial, and from Lemma 5,

[T p(τ0,α), T q(τ0,β)] = 0 . Hence

(d∇̂Ĉ)T p(τ0,α),T q(τ0,β) (Tm(τ0,γ)) = 0.

When p = q = 0 we obtain

(d∇̂Ĉ)τ0,α,τ0,βT
m(τ0,γ)

= ∇̂τ0,α
(
Ĉτ0,βT

m(τ0,γ)
)
− ∇̂τ0,β

(
Ĉτ0,αT

m(τ0,γ)
)
,

= ∇̂τ0,α
(
Mν
βT

m
[
Cτ0,ν (τ0,γ)

]∧)− ∇̂τ0,β (Mν
αT

m
[
Cτ0,ν (τ0,γ)

]∧)
,

=
∂Mν

β

∂tα0
Tm

([
Cτ0,ν (τ0,γ)

]∧)
+Mν

β ∇̂τ0,α
(
Tm

[
Cτ0,ν (τ0,γ)

]∧)
,

− ∂Mν
α

∂tβ0
Tm

([
Cτ0,ν (τ0,γ)

]∧)−Mν
α∇̂τ0,β

(
Tm

[
Cτ0,ν (τ0,γ)

]∧)
,

where we used the ∇̂-flatness of Tm(τ0,γ) and the definition of Ĉ. From

Mν
β = ηνµ << τ0,1τ0,µτ0,β >>0

and relation (6),

(37)
∂Mν

β

∂tα0
= ηνµ << τ0,1τ0,µτ0,βτ0,α >>0 ,

which is symmetric in α and β. Thus,

(d∇̂Ĉ)τ0,α,τ0,β (Tm(τ0,γ)) = Mν
β ∇̂τ0,α

(
Tm

[
Cτ0,ν (τ0,γ)

]∧)−Mν
α∇̂τ0,β

(
Tm

[
Cτ0,ν (τ0,γ)

]∧)
.

Now, we write

(38) Cτ0,β (τ0,σ) = cµβστ0,µ

where cµβσ are the structure constants of the Frobenius multiplication on M .

With this notation, the above relation becomes

(39) (d∇̂Ĉ)τ0,α,τ0,β (Tm(τ0,γ)) =
(
Mµ
β τ0,α(ĉνµγ)−Mµ

ατ0,β(ĉνµγ)
)
Tm(τ0,ν).

But from Lemma 12,

τ0,α(ĉνµγ) =

[
∂cνµγ

∂tδ0

]∧
M δ
α

and

(d∇̂Ĉ)τ0,α,τ0,βT
m(τ0,γ) =

[
∂cνµγ

∂tδ0

]∧ (
M δ
αM

µ
β −M

δ
βM

µ
α

)
Tm(τ0,ν)
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which is zero, because
∂cνµγ
∂tδ0

is symmetric in µ and δ (from d∇C = 0) and

M δ
αM

µ
β −M

δ
βM

µ
α is skew-symmetric in these indices (for any α, β fixed).

It remains to compute (d∇̂Ĉ)τ0,α,T q(τ0,β) (Tm(τ0,γ)), when q ≥ 1. Note that

(d∇̂Ĉ)τ0,α,T q(τ0,β) (Tm(τ0,γ))

= −∇̂T q(τ0,β)

(
Ĉτ0,αT

m(τ0,γ)
)
− Ĉ[τ0,α,T q(τ0,β)]T

m(τ0,γ)

= −∇̂T q(τ0,β)

(
Mσ
αT

m
[
Cτ0,σ(τ0,γ)

]∧)
+ ĈT q−1(τ0,α◦τ0,β) (Tm(τ0,γ))

= −T q(τ0,β)(Mσ
α )Tm

([
Cτ0,σ(τ0,γ)

]∧)
+ ĈT q−1(τ0,α◦τ0,β) (Tm(τ0,γ)) ,

where we used ĈT q(τ0,β) = 0, [T q(τ0,β), τ0,α] = T q−1(τ0,α ◦ τ0,β) and relation

(36). Thus,

(d∇̂Ĉ)τ0,α,T q(τ0,β) (Tm(τ0,γ)) = −T q(τ0,β)(Mσ
α )Tm

([
Cτ0,σ(τ0,γ)

]∧)
+ ĈT q−1(τ0,α◦τ0,β) (Tm(τ0,γ)) .(40)

When q ≥ 2, both terms from the right hand side of the above equality
vanish (for the first term, see Lemma 18). If q = 1, then again from Lemma
18,

T (τ0,β)(Mσ
α ) = (τ0,α ◦ τ0,β)(f̂σ)

(recall that fσ(t10, · · · , tN0 ) = tσ0 ). We obtain:

(d∇̂Ĉ)τ0,α,T (τ0,β) (Tm(τ0,γ))

= − (τ0,α ◦ τ0,β) (f̂σ)Tm
([
Cτ0,σ(τ0,γ)

]∧)
+ Ĉτ0,α◦τ0,βT

m(τ0,γ).

But the right hand side from the above expression is zero, because, for any
primary field W on M∞ and 1 ≤ γ ≤ N ,

(41) −W(f̂σ)Tm
([
Cτ0,σ(τ0,γ)

]∧)
+ ĈW (Tm(τ0,γ)) = 0.

(To prove (41) we may assume, without loss of generality, that W = τ0,α;

then we use the definition of Ĉτ0,α (Tm(τ0,γ)) and τ0,α(f̂σ) = Mσ
α , see Re-

mark 17). Our claim follows.
�

Lemma 28. The equality

(42) ∇̂W(R̂0) + ĈW = [ĈW , R̂∞], ∀W ∈ TM∞
holds.

Proof. When W = Tm(τ0,α) with m ≥ 1, ĈW = 0 and relation (42) is
satisfied, because

∇̂Tm(τ0,α)(R̂0) (Tn(τ0,β)) = ∇̂Tm(τ0,α)

(
Tn [R0(τ0,β)]∧

)
= 0,

where we used the definition of R̂0 and relation (36).
It remains to check that

(43) ∇̂τ0,α(R̂0) + Ĉτ0,α = [Ĉτ0,α , R̂∞].
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For this, recall that

(44) Ĉτ0,α (Tn(τ0,β)) = Mσ
αT

n
([
Cτ0,σ(τ0,β)

]∧)
.

Also, it is straightforward that

(45) [Ĉτ0,α , R̂∞] (Tn(τ0,β)) = Mσ
αT

n
(
[Cτ0,σ , R∞](τ0,β)∧

)
.

We now check that

(46) ∇̂τ0,α(R̂0) (Tn(τ0,β)) = Mσ
αT

n
([
∇τ0,σ(R0)(τ0,β)

]∧)
.

For this, we define functions rβµ on M by R0(τ0,β) = rβµτ0,µ. With this
notation, relation (46) is proved as follows:

∇̂τ0,α(R̂0)(Tn(τ0,β)) = ∇̂τ0,α
(
Tn [R0(τ0,β)]∧

)
= τ0,α (r̂βµ)Tn(τ0,µ)

= Mσ
α

[
∂rβµ
∂tσ0

]∧
Tn(τ0,µ) = Mσ

αT
n
([
∇τ0,σ(R0)(τ0,β)

]∧)
.

Combining the above relation with (44) we obtain:

∇̂τ0,α(R̂0) (Tn(τ0,β)) + Ĉτ0,α (Tn(τ0,β))

= Mσ
αT

n
([
∇τ0,α(R0)(τ0,β) + Cτ0,σ(τ0,β)

]∧)
= Mσ

αT
n
(
[Cτ0,σ , R∞](τ0,β)∧

)
= [Ĉτ0,α , R̂∞] (Tn(τ0,β))

where we used

∇(R0) + C = [C,R∞],

because (T 1,0M,∇, η, C,R0, R∞) is a Saito bundle, and relation (45). We
obtained (43), as required.

�

In the followings we introduce the real structure k into the picture and
we study the tt∗-geometry on the big phase space.

6.2. Lifted harmonic Higgs bundles.

Theorem 29. Assume that (T 1,0M,C, h) is a harmonic Higgs bundle. Then

(T 1,0M∞, Ĉ, ĥ) is also a harmonic Higgs bundle.

The proof follows by combining the Lemmas 30 and 31 (see below). These
lemmas hold for h an arbitrary pseudo-Hermitian metric on M (not neces-
sarily related to η by means of k), without any compatibility conditions
between h and the Frobenius structure on M .

Lemma 30. i) The following relation holds:

(47)
(
∂D̂Ĉ

)
τ0,α,τ0,β

(Tn(τ0,γ)) = Mν
αM

σ
β T

n
([

(∂DC)τ0,ν ,τ0,σ(τ0,γ)
]∧)

,

for any 1 ≤ α, β, γ ≤ N and n ≥ 0. If m or p is bigger than zero, then

(48)
(
∂D̂Ĉ

)
Tm(τ0,α),T p(τ0,β)

(Tn(τ0,γ)) = 0.

ii) In particular, if the first tt∗-equation ∂DC = 0 for (T 1,0M,C, h) holds,

then the first tt∗-equation ∂D̂Ĉ = 0 for (T 1,0M∞, Ĉ, ĥ) holds as well.
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Proof. From the definition of Ĉ and

(49) [Tm(τ0,α), T p(τ0,β)] = 0, ∀m, p ≥ 1,

it is immediately clear that (48) is true when both m, p ≥ 1. Also, note that

D̂W = ∇̂W , for any vector field W in the image of T . Using this remark,
together with the definition of Ĉ again, we obtain:

(∂D̂Ĉ)τ0,α,T p(τ0,β) (Tn(τ0,γ)) = (d∇̂Ĉ)τ0,α,T p(τ0,β) (Tn(τ0,γ)) , ∀p ≥ 1,

which is zero from Lemma 27. It remains to prove (47). For this, we compute

D̂τ0,α

(
Ĉτ0,β

)
(Tn(τ0,γ)) as follows:

D̂τ0,α

(
Ĉτ0,β

)
(Tn(τ0,γ)) = D̂τ0,α

(
Ĉτ0,βT

n(τ0,γ)
)
− Ĉτ0,βD̂τ0,α (Tn(τ0,γ))

= D̂τ0,α

(
Mσ
β T

n
[
Cτ0,σ(τ0,γ)

]∧)−Mσ
α Ĉτ0,β

(
Tn
[
Dτ0,σ(τ0,γ)

]∧)
= ησν << τ0,1τ0,ντ0,βτ0,α >>0 T

n
([
Cτ0,σ(τ0,γ)

]∧)
+Mσ

β D̂τ0,α

(
Tn
[
Cτ0,σ(τ0,γ)

]∧)−Mσ
α Ĉτ0,β

(
Tn
[
Dτ0,σ(τ0,γ)

]∧)
,

where in the third line we used

τ0,α(Mσ
β ) = ησν << τ0,1τ0,ντ0,βτ0,α >>0 .

To simplify notation, we define

E1(α, β, γ, n) := ησν << τ0,1τ0,ντ0,βτ0,α >>0 T
n
([
Cτ0,σ(τ0,γ)

]∧)
E2(α, β, γ, n) := Mσ

β D̂τ0,α

(
Tn
[
Cτ0,σ(τ0,γ)

]∧)
= Mσ

β D̂τ0,α

(
ĉµσγT

n(τ0,µ)
)

E3(α, β, γ, n) := Mσ
α Ĉτ0,β

(
Tn
[
Dτ0,σ(τ0,γ)

]∧)
,

where cµσγ are the structure constants of the Frobenius multiplication on M ,
already defined in (38). With these

D̂τ0,α

(
Ĉτ0,β

)
(Tn(τ0,γ)) = (E1 + E2 − E3)(α, β, γ, n).

Since

(∂D̂Ĉ)τ0,α,τ0,β (Tn(τ0,γ)) = D̂τ0,α

(
Ĉτ0,β

)
(Tn(τ0,γ))−D̂τ0,β

(
Ĉτ0,α

)
(Tn(τ0,γ)),

we need to compute the skew part (in α and β) of E1, E2 and E3. It is clear
that E1 is symmetric in α and β. Also,

E2(α, β, γ, n) = Mσ
β

(
τ0,α

(
ĉµσγ
)
Tn(τ0,µ) + ĉµσγM

ν
αT

n
[
Dτ0,ν (τ0,µ)

]∧)
= Mσ

β

([
∂cµσγ
∂tν0

]∧
Mν
αT

n(τ0,µ) + ĉµσγM
ν
αT

n
[
Dτ0,ν (τ0,µ)

]∧)
and a straightforward computation shows that

E2(α, β, γ, n)− E2(β, α, γ, n) = Mσ
βM

ν
α

[
∂cµσγ
∂tν0

− ∂cµνγ
∂tσ0

]∧
Tn(τ0,µ)

+Mσ
βM

ν
αT

n
([
cµσγDτ0,ν (τ0,µ)− cµνγDτ0,σ(τ0,µ)

]∧)
.
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Since
∂cµσγ
∂tν0

is symmetric in σ and ν, the first term in the right hand side of

the above relation vanishes and we obtain:

(50) E2(α, β, γ, n)− E2(β, α, γ, n) = Mσ
βM

ν
α

[
cµσγf

δ
νµ − cµνγf δσµ

]∧
Tn(τ0,δ),

where the functions f δµγ are defined by Dτ0,µ(τ0,γ) = f δµγτ0,δ. A similar
computation shows that

(51) E3(α, β, γ, n)− E3(β, α, γ, n) = Mν
αM

σ
β

[
cδσµf

µ
νγ − cδνµfµσγ

]∧
Tn(τ0,δ).

Hence we obtain

(∂D̂Ĉ)τ0,α,τ0,β (Tn(τ0,γ)) = (E2 − E3)(α, β, γ, n)− (E2 − E3)(β, α, γ, n)

= Mν
αM

σ
β

[
cµσγf

δ
νµ − cµνγf δσµ − cδσµfµνγ + cδνµf

µ
σγ

]∧
Tn(τ0,δ).

On the other hand, one may check that

(∂DC)τ0,ν ,τ0,σ(τ0,γ) =
(
cµσγf

δ
νµ − cµνγf δσµ − cδσµfµνγ + cδνµf

µ
σγ

)
τ0,δ.

Combining the above two relations, we obtain (47), as required. Our claim
follows. �

Lemma 31. i) The following relation holds: for any 1 ≤ α, β, γ ≤ N and
m ≥ 0,

D̂Rτ0,α,τ0,β (Tm(τ0,γ)) + [Ĉτ0,α , Ĉ
†
τ0,β

](Tm(τ0,γ))

= Mσ
αM

ν
βT

m

([
DRτ0,σ ,τ0,ν (τ0,γ) + [Cτ0,σ , C

†
τ0,ν

](τ0,γ)
]∧)

,(52)

where C† ∈ Ω0,1(M,EndT 1,0M) and Ĉ† ∈ Ω0,1(M∞,EndT 1,0M∞) are, re-

spectively, the h-adjoint of C and the ĥ-adjoint of Ĉ.
ii) In particular, if the second tt∗-equation

DR+ [C,C†] = 0

for (T 1,0M,C, h) holds, then the second tt∗-equation

D̂R+ [Ĉ, Ĉ†] = 0

for (T 1,0M∞, Ĉ, ĥ) holds as well.

Proof. We first compute the ĥ-adjoint Ĉ†τ0,β of Ĉτ0,β , as follows:

ĥ
(
Ĉτ0,β (Tn(τ0,α)) , Tm(τ0,γ)

)
= Mσ

β ĥ
(
Tn
([
Cτ0,σ(τ0,α)

]∧)
, Tm(τ0,γ)

)
= Mσ

β δnm
[
h
(
Cτ0,σ(τ0,α), τ0,γ

)]∧
= Mσ

β δnm

[
h
(
τ0,α, C

†
τ0,σ

(τ0,γ)
)]∧

= Mσ
β ĥ

(
Tn(τ0,α), Tm

([
C†τ0,σ(τ0,γ)

]∧))
= ĥ

(
Tn(τ0,α),Mσ

β T
m

([
C†τ0,σ(τ0,γ)

]∧))
.

We obtain:

Ĉ†τ0,β (Tm(τ0,γ)) = Mσ
β T

m

([
C†τ0,σ(τ0,γ)

]∧)
,



24 LIANA DAVID AND IAN A.B. STRACHAN

which, combined with

Ĉτ0,α (Tm(τ0,γ)) = Mσ
αT

m
(
[Cτ0,σ(τ0,γ)]∧

)
gives

[Ĉτ0,α , Ĉ
†
τ0,β

] (Tm(τ0,γ)) = Mσ
αM

ν
βT

m
(

[Cτ0,σ , C
†
τ0,ν

](τ0,γ)∧
)
.

The above relation, together with

D̂Rτ0,α,τ0,β (Tm(τ0,γ)) = Mσ
αM

ν
βT

m
([
DRτ0,σ ,τ0,ν (τ0,γ)

]∧)
(see Lemma 20), implies (52). This proves i). Claim ii) follows from i) and

D̂RW1,W2 = 0, [ĈW1 , Ĉ
†
W̄2

] = 0

which hold when W1 or W2 belongs to the image of T .
�

6.3. Lifted harmonic real Saito bundles.

Theorem 32. Assume that (T 1,0M,∇, η, R0, R∞, k) is a real Saito bundle

(respectively, a harmonic real Saito bundle). Then (T 1,0M∞, ∇̂, η̂, Ĉ, R̂0, R̂∞, k̂)
is also a real Saito bundle (respectively, a harmonic real Saito bundle).

The above theorem is a consequence of Theorems 26 and 29 and the
following lemma.

Lemma 33. If h is compatible with η, then ĥ is compatible with η̂.

Proof. Recall that h is compatible with η if the Chern connection D of h
preserves η, i.e. D(η) = 0 and the compatibility of ĥ and η̂ is defined in a
similar way. In order to prove our claim, we will show that

(53) D̂W(η̂) = 0, ∀W ∈ Im(T )

and

(54) D̂τ0,γ (η̂) (Tn(τ0,α), Tm(τ0,β)) = Mσ
γ δnm

[
Dτ0,σ(η)(τ0,α, τ0,β)

]∧
.

To prove these two relations, we notice that for any vector field V ∈ T 1,0
M∞

and n,m ≥ 0, 1 ≤ α, β ≤ N ,

D̂V(η̂) (Tn(τ0,α), Tm(τ0,β)) = −η̂
(
D̂V (Tn(τ0,α)) , Tm(τ0,β)

)
− η̂

(
Tn(τ0,α), D̂V (Tm(τ0,β))

)
,(55)

because η̂ (Tn(τ0,α), Tm(τ0,β)) is constant. This relation, together with the

expression of D̂ from Lemma 19, implies (53). Letting V := τ0,γ in (55) we
obtain:

D̂τ0,γ (η̂) (Tn(τ0,α), Tm(τ0,β)) =

= −Mσ
γ η̂
(
Tn
([
Dτ0,σ(τ0,α)

]∧)
, Tm(τ0,β)

)
−Mσ

γ η̂
(
Tn(τ0,α), Tm

([
Dτ0,σ(τ0,β)

]∧))
= −Mσ

γ δmn
[
η
(
Dτ0,σ(τ0,α), τ0,β

)]∧ −Mσ
γ δmn

[
η
(
τ0,α, Dτ0,σ(τ0,β)

)]∧
= Mσ

γ δnm
[
Dτ0,σ(η)(τ0,α, τ0,β)

]∧
,
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i.e. relation (54) holds as well. �

Remark 34. The above lemma, combined with Theorem 29, imply that if
(T 1,0M,D,C, h, k) is a DChk-bundle, then (T 1,0M∞, D̂, Ĉ, ĥ, k̂) is a D̂Ĉĥk̂-
bundle (the definition of DChk-bundles was recalled in Remark 10).

6.4. Lifted harmonic potential real Saito bundles.

Theorem 35. Suppose that (M, •, e, η, E) is a harmonic Frobenius mani-
fold, with real structure k and potential A. Then T 1,0M∞, with the data
(∇̂, η̂, Ĉ, R̂0, R̂∞, k̂, Â), is a harmonic potential real Saito bundle.

Proof. It is easy to check that taking Hermitian adjoints of endomorphisms,
with respect to h and ĥ, commutes with taking natural lifts, so that (Â)† =

Â† (we use the same symbol † to denote h and ĥ-adjoints). There is a similar
commutativity property when the metrics η and η̂ are used instead of h and
ĥ. Thus, since A is η-self adjoint, Â is η̂-self adjoint. Similarly,

R̂∞ + [(Â)†, R̂0] =
(
R∞ + [A†, R0]

)∧
is ĥ-self adjoint, because R∞ + [A†, R0] is h-self adjoint. From Theorem 32,
we only have to check that

(56) D̂(1,0) = ∇̂ − [Â†, Ĉ], D̂(1,0)Â = Ĉ.

Using that Tm(τ0,β) are ∇̂-parallel, the first equality (56) is equivalent to

(57) D̂Tn(τ0,α) (Tm(τ0,β)) + [Â†, ĈTn(τ0,α)] (Tm(τ0,β)) = 0.

When n > 0 both terms of (57) are zero. We now show that (57) holds also
for n = 0. For this, we use

(58) D̂τ0,α (Tm(τ0,β)) = Mσ
αT

m
([
Dτ0,σ(τ0,β)

]∧)
and

(59) [Â†, Ĉτ0,α ] (Tm(τ0,β)) = Mσ
αT

m
(

[A†, Cτ0,σ ](τ0,β)∧
)

(easy check). On the other hand, ∇ = D + [A†, C] (M with the given data
is a harmonic Frobenius manifold, with potential A) and, since ∇(τ0,β) = 0,

(60) Dτ0,σ(τ0,β) + [A†, Cτ0,σ ](τ0,β) = 0.

Combining (58), (59) and (60) we obtain

D̂τ0,α (Tm(τ0,β)) + [Â†, Ĉτ0,α ] (Tm(τ0,β)) = 0.

The first equality (56) is proved. The second equality (56) can be proved
equally easy, by using

D̂τ0,α(Â) (Tm(τ0,β)) = Mσ
αT

m
([
Dτ0,σ(A)(τ0,β)

]∧)
D̂Tn(τ0,α)(Â) (Tm(τ0,β)) = 0,(61)

the definition of Ĉ and the condition D1,0A = C.
�
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Remark 36. Relations (59) and (61) remain true when A†, respectively A,
are replaced by any endomorphism of T 1,0M. Combining these facts with
Remark 34, it is easy to see that if (T 1,0M,C, h, k,U ,Q) is a CV-bundle (see

Remark 10), then (T 1,0M∞, Ĉ, ĥ, k̂, Û , Q̂) is also a CV-bundle.

7. Discussion

The construction of these Hermitian structures on the big phase space
rests on the pre-existence of two different structures:

• the lifting map uα = ηαβ << τ0,1τ0,β >>0 ;
• the Hermitian structures on the small phase space,

and one should comment separably on the tractability of each of these two
points.

The first point rests on the work of Dijkgraaf and Witten [2]. We repeat
verbatim their construction, using their normalization of the topological
recursion relation which differs by a factor to the one used in [14, 15] and in

the above. The string equation gives (where uα = ηαβu
β and ti,α = ηαβt

β
i )

uα = t0,α +

∞∑
i=0

(i+ 1)ti+1,β << τi(γβ)γα >>0

and small phase space calculations give the constitutive relations

<< τi(γβ)γα >>0= Rα,β,i(u1 , . . . , uN ) .

Combining these gives

uα = t0,α +
∞∑
i=0

(i+ 1)ti+1,βRα,β,i(u1 , . . . , uN ) .

Inverting these equations gives uα = uα(tnβ) , and hence the two-point cor-
relation functions << τ0,1τ0,β >>0 as functions of the big phase space vari-
ables, as required in order to perform the canonical lift described in Section
5 . If dim(M) = 1 this reduces to the single equation

(62) u = t0 +
∞∑
i=1

tiu
i .

Thus the extension to the big phase space is entirely tractable, up to the
inversion of these equations.

Hermitian structures in one dimension are trivial. One just has h(∂0, ∂0) =
|a(t)| for some non-vanishing function a(t) , and the corresponding anti-
holomorphic involution is then given by k(∂0) = a−1|a| ∂0 . In fact this gives
a positive CDV-structure [21] . Thus combining this with the solution to
(62) gives Hermitian structures on the big phase space to 2 dimensional
gravity [22] .

The existence of tt∗-geometries in higher dimensions is harder. The Her-
mitian structures involve the construction of solutions to Toda and harmonic
map type equations [1, 9], often with very specific boundary conditions.
Even in dimension two this involves specific solutions to the Painlevé III
equation. While these equations are integrable, one is rapidly drawn into
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very sophisticated isomonodromy problems. For details of these construc-
tions see, for examples originating in quantum cohomology, [12], and for
examples originating in singularity theory, [11, 19] .

Ultimately these constructions rely on the integrability properties of the
tt∗-equations [1, 6]. The tt∗-equations are the compatibility conditions, or
zero-curvature equations, for the deformed connections

(λ)DX Y = (DX − λCX)Y ,
(λ)DX̄ Y = (DX̄ − λ−1C†X)Y .

It is easy to show that the λ±2-terms in the curvature of this connection
vanish from the properties of the Higgs field, the λ±1-terms vanish from
the first tt∗-equation ∂DC = 0 , and the λ0-term vanishes from the second
tt∗-equation DR+ [C,C†] = 0. They thus provide a Lax pair for, and hence
the integrability of, the tt∗-equations.

The results in this paper show that there exists a solution of the analogous
Lax-pair on the big phase space M∞. However, while one may speculate that
they define an integrable system on M∞ all that has been shown is that any
solution on M may be naturally lifted to a solution on M∞ , not that all
solutions arise in this way. The integrability aspects of the tt∗-equations on
the big phase space deserves a separate study.

One geometric structure that plays a prominent role in quantum coho-
mology is the Euler field, which on the big phase space takes the form

χ = −
∑
m,α

(m+ bα − b1 − 1)t̃αmτm(γα)−
∑
m,α,β

Cβα t̃αmτm−1(γβ) ,

with the associated quasihomogeneity equation

<< χ >>g= 2(b1 + 1)(1− g)Fg +
1

2
δg,0

∑
α,β

Cαβtα0 t
β
0 −

1

24

∫
V
c1(V )∪ cd−1(V )

(for a precise definition of the various constants, see [14, 15]). To develop
further these ideas one should study the homogeneity properties of the lifted
objects on the big phase space, starting with their homogeneity properties
on the small phase space. Another direction of research would be to reformu-
late these constructions in the semi-simple case in terms of idempotents and
canonical coordinates, following [17]. However, a more geometric problem
is to seek a description of these Hermitian structures in terms of Given-
tal’s Lagrangian cones [8]. Recall that Givental showed that the function
F0 satisfies the Topological Recursion Relations, the String Equation and
the Dilaton Equation if and only if a corresponding Lagrangian submanifold
has certain natural geometric properties. This gives a beautiful interpre-
tation of quantum cohomology and leads naturally to the quantization of
these objects. Understanding how the (compatible) Hermitian structures
introduced in this paper can be interpreted within this framework would
be of great interest. In a sense the results of this paper could be seen as
a ‘pre-Givental’ approach. Understanding the symmetries and quantization
of the tt∗-equations, following Givental, would provide an elegant solution
to the problems addressed in this paper. We hope to address such problems
in subsequent work.
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