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Identifying a causal link between prolactin signaling pathways
and COVID-19 vaccine-induced menstrual changes
Rima Hajjo 1,2,3✉, Ensaf Momani4,5, Dima A. Sabbah 1, Nancy Baker6 and Alexander Tropsha2

COVID-19 vaccines have been instrumental tools in the fight against SARS-CoV-2 helping to reduce disease severity and mortality.
At the same time, just like any other therapeutic, COVID-19 vaccines were associated with adverse events. Women have reported
menstrual cycle irregularity after receiving COVID-19 vaccines, and this led to renewed fears concerning COVID-19 vaccines and
their effects on fertility. Herein we devised an informatics workflow to explore the causal drivers of menstrual cycle irregularity in
response to vaccination with mRNA COVID-19 vaccine BNT162b2. Our methods relied on gene expression analysis in response to
vaccination, followed by network biology analysis to derive testable hypotheses regarding the causal links between BNT162b2 and
menstrual cycle irregularity. Five high-confidence transcription factors were identified as causal drivers of BNT162b2-induced
menstrual irregularity, namely: IRF1, STAT1, RelA (p65 NF-kB subunit), STAT2 and IRF3. Furthermore, some biomarkers of menstrual
irregularity, including TNF, IL6R, IL6ST, LIF, BIRC3, FGF2, ARHGDIB, RPS3, RHOU, MIF, were identified as topological genes and
predicted as causal drivers of menstrual irregularity. Our network-based mechanism reconstruction results indicated that BNT162b2
exerted biological effects similar to those resulting from prolactin signaling. However, these effects were short-lived and didn’t raise
concerns about long-term infertility issues. This approach can be applied to interrogate the functional links between drugs/vaccines
and other side effects.
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INTRODUCTION
Corona virus disease 19 (COVID-19) pandemic, caused by the
severe acute respiratory syndrome corona virus 2 (SARS-CoV-2), is
still sweeping the world, causing more fatalities and threatening
with dangerous viral variants and more economic losses1–4. The
virus has infected hundreds of millions and caused millions of
deaths worldwide. COVID-19 vaccines have been instrumental
tools in the fight against the virus, and they helped reduce disease
severity and mortality5–10. At the same time, COVID-19 vaccines
were associated with adverse events, just like any other
therapeutic11–24.
The occurrence of post-vaccine menstrual cycle disturbances

has gone unnoticed during clinical trials phase of COVID-19
vaccines. Then, thousands of reports pointing to menstrual
changes started to surface following worldwide vaccination
campaigns14,16,25. Healthcare authorities dismissed these claims
at the beginning and considered them unjustified. But such
reports continued to appear from various countries around the
world which led to increased vaccine hesitancy in young
women26–29.
Recently, serious concerns have been raised about the effects of

COVID-19 vaccines on menstruation27–31, and these fears keep
escalating. Thousands of women reported post-COVID-19-vaccine
menstrual changes to health care authorities around the world,
and several published studies indicated an association between
menstrual abnormalities and COVID-19 vaccines32–34. Women
feared that menstrual changes suggest long-term adverse effects
on fertility and pregnancy, which led to hesitation against
vaccination among women. In fact, menstrual changes have been
reported after receiving both mRNA and adenovirus vectored

COVID-19 vaccines which led to the speculation that it is the
nature of the immune response to vaccines, rather than vaccine
components, that led to these adverse events13,14,16,31,35–37.
Furthermore, previous reports suggested that vaccine-associated
period changes occur due to transient perturbations to the
hypothalamic-pituitary-ovarian (HPO) axis38–40. In fact, changes in
menstrual cycles have been reported for non-COVID-19 vaccines
including the human papillomavirus and typhoid vaccines41,42.
Herein, we devised a workflow to assess menstrual adverse

events in response to treatment with mRNA vaccine BNT162b2.
Our results revealed a causal link implicating prolactin signaling
and hormone-induced effects on the menstrual cycle and
endometrium resulting from post-vaccine gene expression
perturbances. Fortunately, gene expression perturbations were
short-term and therefore are not expected to cause long-term
menstrual irregularities. The approach devised and implemented
herein can be applied to assess other vaccines and other vaccine-
induced biological effects.

RESULTS
Systems biology findings
We undertook a systems biology approach to derive transcrip-
tional signatures for COVID-19 mRNA vaccines relying on
BNT162b2 transcriptomics data. Our workflow is shown in Fig. 1.
Previously, we applied similar approaches to explore the network
pharmacology of drugs and vaccines43, as well as investigating
disease pathogenesis pathways for prioritizing biomarkers and
drug targets11,12. Each study workflow is tweaked to suit the
scientific questions we are asking as well as the types of data we

1Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman 11733, Jordan. 2Laboratory for Molecular Modeling, Division of
Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. 3Jordan CDC, Amman, Jordan.
4Department of Basic Medical sciences, Faculty of Medicine, Al Balqa’ Applied University, Al-Salt, Jordan. 5Applied Science Research Center, Applied Science Private
University, Amman, Jordan. 6ParlezChem, 123 W Union St., Hillsborough, NC 27278, USA. ✉email: r.hajjo@zuj.edu.jo

www.nature.com/npjvaccines

Published in partnership with the Sealy Institute for Vaccine Sciences

1
2
3
4
5
6
7
8
9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41541-023-00719-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41541-023-00719-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41541-023-00719-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41541-023-00719-6&domain=pdf
http://orcid.org/0000-0002-7090-5425
http://orcid.org/0000-0002-7090-5425
http://orcid.org/0000-0002-7090-5425
http://orcid.org/0000-0002-7090-5425
http://orcid.org/0000-0002-7090-5425
http://orcid.org/0000-0003-1428-5097
http://orcid.org/0000-0003-1428-5097
http://orcid.org/0000-0003-1428-5097
http://orcid.org/0000-0003-1428-5097
http://orcid.org/0000-0003-1428-5097
https://doi.org/10.1038/s41541-023-00719-6
mailto:r.hajjo@zuj.edu.jo
www.nature.com/npjvaccines


have. In this study, the analysis of transcriptional raw data
extracted from GSE169159 indicated that gene expression
alterations on day 22 of receiving the first vaccine dose (i.e., the
day after receiving the second vaccine dose) affected genes that
are known biomarkers or drug targets for menstrual cycle
disturbances. All details on deriving gene signatures from
transcriptomics data of GSE169159 are described elsewhere12.
Additionally, no significant DEGs were observed on day 28 after
receiving the first vaccine dose.

Vaccine Gene Signatures
Two transcriptomic gene signatures (GS) for BNT162b2 vaccine
were derived from gene expression profiling experiments in
response to treatment with vaccine (GSE169159)44. The first gene

signature (GS1) consisted of 1853 differentially expressed genes
(DEGs), 884 upregulated and 969 downregulated DEGs that
satisfied the prioritization criteria of a false discovery rate
(FDR) ≤ 0.05, and a log2 fold change (log2FC) ≥ 2.00 or ≤−2.00.
The second gene signature (GS2) consisted of 108 DEGs, 74
upregulated and 18 downregulated DEGs that satisfied the
prioritization criteria of an FDR ≤ 0.05, and a log2FC ≥ 5.00 or
≤−5.00.
In order to get a better idea about the biological significance of

the DEGs in response to treatment with BNT162b2, we applied a
bioinformatics workflow relying on both downstream enrichment
analysis, and upstream analysis for putative regulators responsible
for causing the gene expression changes observed in transcrip-
tomics data.

Upstream regulation analysis
Upstream analysis was performed using the DEGs in GS1 (applying
a threshold of log2FC) and GS2 using causal reasoning45. GS1
consisted of 1853 DEGs and therefore was trimmed by our
upstream analysis algorithm to reduce the complexity of
generated results. The algorithm automatically applied log2FC ≥
+2.62 or ≤−2.62 threshold which reduced the number of DEGs
to 1107 (743 upregulated and 612 downregulated); since the
applied causal reasoning algorithm requires a query list of about
thousand genes on average. This analysis resulted in the
prediction of 826 activated and 480 inactivated upstream
regulators including transcription factors, kinases, phosphatases,
and microRNAs (Supplementary Table 1). All prioritized upstream
regulators have prediction activities with p-values ≤ 0.05 and a
calculation distance = 1–3.
To focus on upstream regulators of genes with the maximal

differential expression in response to vaccination, we applied the
same analysis to GS2 consisting of 92 DEGs (74 upregulated and
18 downregulated) that had log2FC ≥+5.00 or ≤−5.00. Our
analysis resulted in predicting 625 activated proteins 389
inactivated (Supplementary Table 2).
All prioritized upstream regulators were scored based on the

number of differentially expressed genes that can be reached via
the shortest paths, and the correctness of the regulation. The
activity prediction correctness is assessed based on the activation
and inhibition edges along the paths and the expected and
observed directionality of fold changes of the DEGs. It should be
noted that the calculation distance is one of the most important
parameters that can distinguish direct regulation effects from
indirect effects. For example, a calculation distance of one means
that the upstream regulator is one step away from the
transcriptional event indicating that the regulation event in direct.

Filtering upstream regulators by molecular function and
distance
The changes in gene expression that we observe in response to
perturbagens (e.g., vaccines), often result from interactions
between gene regulatory regions and regulatory proteins such
as transcription factors, kinases, phosphatase, RNA molecules and
others. Transcription factors (TFs) are considered topologically
more important than DEGs especially for purposes of mechanism
reconstruction; or at least complementary to DEGs for reconstruct-
ing the biological pathways and networks responsible for a
phenotype of interest (e.g., menstrual irregularities in response to
vaccination). Although transcription factors are not the only
master regulators, but they are probably one of the easiest to
validate experimentally using in vitro assays.
Hence, we sought filtering the predicted causal regulatory

proteins by “molecular function” = “transcription factor” and
“calculation distance” = 1. A calculation distance=1, indicates
direct effects on transcription. This filtering step resulted in 13
transcription factors (IRF1, STAT1, STAT2, RELA, IRF9, SPI, NFKB1,

Fig. 1 Informatics systems biology workflow. A devised workflow
for studying the mechanism(s) underlying the biological effects of
vaccines.
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IRF3, IRF7, BCL6, PRDM1, GATA3) for DEGs in GS1 with log2FC ≥
+2.62 or ≤−2.62 (Supplementary Table 3). Applying the same
filters on the causal regulatory proteins predicted for GS2 resulted
in the prediction of five transcription factors (IRF1, STAT1, RELA,
IRF3 and STAT 2), with a calculation distance= 1 (Supplementary
Table 4). The overlapping TFs resulting for the previous two causal
reasoning analyses are listed in Table 1. Such hits can be
considered higher confidence transcription factors for causing
the observed phenotype.
Two of the five higher confidence transcription factors (IRF1 and

IRF3) belong to the interferon regulatory factors, and other two
transcription factors (STAT1 and STAT2) belong to the signal
transducers and transcription activators which mediate cellular
responses to interferons. The fifth transcription factor, RelA,
belongs to the Rel homology domain/immunoglobulin-like fold
and is a regulator of NF-kB activity. As a validation of these
findings, we reported examples of supporting evidence in the
biomedical literature linking these five predicted higher-
confidence transcription factors to menstrual cycle irregularities
(Table 1). In fact, supporting studies cited in Table 1 brought our
attention to significant interactions between these transcription
factors and prolactin/PRL gene.
Among all predicted transcription factors for GS1 and GS2, IRF1

had the smallest activity prediction p-values values (4.237E-16 for
GS1, and 7.63E-06 for GS2). Therefore, IRF’s causal reasoning
network shown in Fig. 2a, b. This network serves as an example of
the causal reasoning networks we relied in this work. Additional
networks for STAT1, RELA, IRF3 and STAT 2 are provided in
Supplementary Material (Supplementary Fig. 1–4).

Identifying important RNA molecules as upstream regulators
Many RNA molecules, including microRNAs and long non-coding
RNAs, haven been predicted as upstream molecular regulators
that worth further analysis by experimental scientists. DEGs in GS1,
with log2FC ≥+2.62 or ≤−2.62 and FDR ≤ 0.05, led to the
prioritization of 182 RNA molecules including miR-502-5p, miR-
345-5p, miR-548x-3p, miR-548x-3p, miR-935, miR-383-5p, miR-
450a-5p, miR-450a-5p, miR-4674 and miR-3941 which topped the
list based on their activity prediction p-values. However, DEGs in
GS2 led to the prioritization of 28 RNA molecules including

LINC02605, miR-221-5p, NBAT1, RMRP, miR-378b, MIR31HG, HOXB-
AS1, miR-514b-5p, LINC00277 and CASC9 as top hits. Additionally,
we identified 18 overlapping RNA molecules between the 182
(from the first DEGs in GS1) and 28 (from GS2) that are considered
high confidence RNA upstream regulators. The overlapping RNA
molecules were in order of their activity prediction p-values, from
smaller to larger values, were: LINC02605, miR-221-5p, NBAT1,
RMRP, miR-378b, MIR31HG, HOXB-AS1, miR-514b-5p, LINC00277,
CASC9, ZFPM2-AS1, miR-219-1-3p, miR-3941, LINC02605, miR-210-
5p, miR-3134, MIR31HG, LOC101929517, LINC-PINT, SBF2-AS1.

Filtering upstream regulators and downstream DEGs by
biomarker uses
Menstrual irregularity biomarkers were extracted from the Cortellis
Drug Discovery Intelligence (CDDI) database46 using the following
search terms: biomarker type = “gene” or “protein”; condition =
“menstrual cycle”, “menstrual abnormalities” or “premenstrual
syndrome”; biomarker role = “diagnosis”, “disease profiling”,
“prognosis” or “prognosis–risk stratification”. Finally, we retrieved
213 biomarkers in total. We also extracted 177 biomarkers for
prolactin.
Next, we checked overlaps between the 213-biomarker set and

3 gene sets of interest: 1) DEGs with log2FC ≥+2.00 or ≤−2.00, 2)
causal hubs predicted using DEGs with log2FC ≥+2.00 or ≤−2.00,
and 3) causal hubs predicted using DEGs with log2FC ≥+5 or
≤−5. Our results indicated that TNF was the only common gene
between our biomarkers list and all other three gene lists. Nine
genes (ARHGDIB, LIF, FGF2, MIF, IL6R, IL6ST, RHOU, BIRC3 and
RPS3) were common between the biomarkers list and two gene
sets. Finally, there were 33 common genes between menstrual
cycle biomarkers and vaccine-induced DEGs and/or predicted
causal proteins (Table 2), and 35 gene overlaps between prolactin
biomarkers and vaccine-induced DEGs and/or predicted causal
proteins (Table 3). All gene overlaps are shown in Fig. 3a, b. We
could look at overlaps with more gene lists as a method of filtering
higher confidence “topological” genes that may be driving the
menstrual irregularities in response to COVID-19 vaccines (i.e.,
increased confidence due to biological relevance).

Table 1. Top commonly predicted upstream regulatory hubs at a distance of 1 for DEGs in GS1 and GS2.

Molecular entity Molecular function Gene Predicted activitya Correct/totalb Prediction p-valuec Distanced Evidencee

IRF1 Transcription factor IRF1 + 60/62*
17/17**

4.24E-16f

7.63E-06g
1 Yes59,60

STAT1 Transcription factor STAT1 + 64/70*
15/16**

1.22E-13f

2.59E-04g
1 Yes118–122

RelA (p65 NF-kB subunit) Transcription factor RELA + 59/78*
14/15**

3.21E-06f

4.88E-04g
1 Yes123–132

STAT2 Transcription factor STAT2 + 23/24*
8/8**

1.49E-06f

3.91E-03g
1 Yes117,133–137

IRF3 Transcription factor IRF3 + 19/22*
9/9**

4.28E-04f

1.95E-03g
1 Yes138–148

aPredicted activity of the key hub by causal reasoning is denoted by – if the hub is inhibited, and denoted by + if the hub is activated.
bCorrect/total network predictions show the number of genes in the dataset predicted correctly over the total number of genes in the causal reasoning
network.
cCalculation distance from the upstream regulatory key hubs and downstream genes.
For example, distances of 2 and 3 identify key hubs that are distant key hubs, while a distance of 1 identify closest one-step away transcriptional factors.
dp-value of the predicted protein activity calculated using the polynomial test.
eEvidence for an existing experimental link between the transcription factor and menstrual irregularity.
fp-value of the predicted protein activity calculated using the polynomial test for GS1.
gp-value of the predicted protein activity calculated using the polynomial test for GS2.
*For GS1.
**For GS2.
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Pathway enrichment and interconnectivity analysis
We used pathway enrichment analysis to assess whether the
identified causal regulators work collectively to affect certain
biological pathways. Pathway enrichment results using five higher
confidence upstream causal regulators as a query gene list (IRF1,
STAT1, RELA, IRF3 and STAT 2), highlighted the prolactin signaling
pathway as one of the significantly enriched pathways with an
enrichment p-value of 1.60E-05 (Fig. 4a). Next, we included PRL in
the query list (PRL, IRF1, STAT1, RELA, IRF3 and STAT 2) for
pathway enrichment which led to the prioritization of prolactin
singling pathway as the top enriched pathway with an enrichment
p-value of 8.92E-07 (Fig. 4b). Similar analyses were performed on
the 33 filtered biomarker genes/proteins (Fig. 4c), and biomarker
proteins in addition to PRL, IRF1, STAT1, RELA, IRF3 and STAT 2
(Fig. 4d).

It is well known that changes in prolactin signaling can result in
menstrual cycle irregularities47–51. Searching PubMed using terms
“prolactin” AND “menstrual” returned 1950 results, while search
terms “prolactin” AND “menstrual cycle” returned 1270 results, and
search terms “prolactin” AND “menstrual irregularity” returned 32
results. This is a clear indication that the studied mRNA COVID-19
vaccine BNT162b2 has the potential to cause menstrual irregula-
rities by inducing perturbations in the genes and/or proteins
involved in prolactin signaling pathways (i.e., through affecting
the activity of key transcription factors involved in this pathway).
Prolactin signaling pathway affects a wide range of physiological
processes ranging from reproduction and lactation to growth and
development, from endocrinology and metabolism to brain and
behavior, as well as immune regulation (Fig. 5a, b).
Prolactin is a polypeptide hormone encoded by the PRL gene

and secreted by the anterior pituitary gland. It is known as a

Fig. 2 Causal reasoning networks. a Causal reasoning network of highest confidence transcription factor IRF1 using DEGs in GS1. b Causal
reasoning network of highest confidence transcription factor IRF1 using DEGs in GS2. Gene expression changes are shown in green and red
sectors around each molecule. Increased expression value corresponds to the green sector which size increases clockwise around the
molecule icon. Decreased expression value corresponds to the red sector which size increases counterclockwise. Supportive data panel
contains over and under-expressed genes from the experimental data set which support a hypothesis that IRF1 is in a predicted predominant
“active” state. Conflicting data panel contains over and under-expressed genes from the experimental data set which are discordant with the
hypothesis that IRF1 is in predicted predominant “active” state.
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growth regulator for many tissues, including cells of the immune
system. It functions as a cytokine with immunomodulatory
activities. It may also play a role in cell survival by suppressing
apoptosis, and it is essential for lactation. Chemically, prolactin’s
structure is similar to those of the growth hormone and the
placental lactogen hormone, which form together what is known
as the “prolactin/growth hormone/placental lactogen” family, and
they all originated from one ancestral gene.

Signaling pathway impact analysis (SPIA)
SPIA was performed on the combined list consisting of the DEGs
and the predicted causal hubs. Enrichment analyses performed on
the combined list of DEGs, and key hubs have previously been

shown to highlight more biologically relevant results52. The top
five enriched pathway maps were: 1) immune response interferon-
alpha/beta (IFN-alpha/beta) signaling via JAK/STAT, 2) regulation
of antiviral response by SARS-CoV-2, 3) immune response antiviral
actions of interferons, 4) immune response induction of apoptosis
and inhibition of proliferation mediated by interferon-gamma
(IFN-gamma), and 5) immune response IFN-gamma in macro-
phages activation with impact p-values of 4.31E-25, 1.24E-11,
1.04E-10, 5.61E-10, and 1.59E-9 respectively. All predicted path-
ways are highlighting the role of interferons. Hence, SPIA results

Table 2. List of menstrual irregularity biomarkers which overlap with
BNT162b2 vaccine-induced DEGs and/or predicted causal proteins.

# Gene Confidence
Score

Activity Activity
Prediction
p-value GS1

Activity
Prediction
p-value GS2

DEG

1 TNF 4 + 3.80E-11 2.96E-03 Yes

2 IL6R 3 + 3.08E-12 1.37E-04 No

3 IL6ST 3 + 3.08E-12 9.00E-05 No

4 LIF 3 + 5.24E-12 2.59E-04 No

5 BIRC3 3 + 8.89E-12 7.63E-06 No

6 FGF2 3 + 3.00E-11 1.18E-03 No

7 ARHGDIB 3 - 7.26E-11 7.63E-06 No

8 RPS3 3 + 1.25E-04 6.27E-03 No

9 RHOU 3 + 4.76E-04 3.60E-03 No

10 MIF 3 + 9.94E-03 3.60E-03 No

11 STAT4 2 + 8.48E-08 NA No

12 TEK 2 - 4.92E-06 NA No

13 CXCR4 2 + 9.06E-05 NA No

14 GAK 2 + 2.67E-04 NA No

15 ACTN1 2 + 9.62E-04 NA No

16 PGR 2 - 5.31E-03 NA No

17 MFN2 2 - 7.00E-03 NA No

18 EZH2 2 + 7.06E-03 NA No

19 AXL 2 + NA 3.69E-03 No

20 IGFBP2 2 + NA 3.81E-03 No

21 NUB1 1 NA NA NA Yes

22 ICAM1 1 NA NA NA Yes

23 PSME2 1 NA NA NA Yes

24 ADM 1 NA NA NA Yes

25 IL1B 1 NA NA NA Yes

26 HIF1A 1 NA NA NA Yes

27 GDI2 1 NA NA NA Yes

28 PHF19 1 NA NA NA Yes

29 CD1C 1 NA NA NA Yes

30 CTSW 1 NA NA NA Yes

31 KISS1R 1 NA NA NA Yes

32 DLK2 1 NA NA NA Yes

33 CCL5 1 NA NA NA Yes

All molecules were ranked based on their activity prediction p-values as
well their overlap confidence score. An overlap confidence score of 3
indicates that a specific gene/protein is overlapping between the
biomarker set and 3 other gene sets, while a score of 1 indicates that
gene/protein is overlapping between the biomarker list and one other
gene set.

Table 3. List of prolactin biomarkers which overlap with BNT162b2
vaccine-induced DEGs and/or predicted causal proteins.

# Gene Overlap
confidence
score

Activity Activity
prediction
p-value GS1

Activity
prediction
p-value GS2

DEG

1 TNF 3 + 3.80E-11 2.96E-03 Yes

2 MAPK14 3 + 5.46E-07 4.39E-04 Yes

3 PPARA 3 - 9.69E-06 2.97E-05 Yes

4 NFE2L2 3 - 2.32E-03 4.68E-03 Yes

5 TXNIP 3 - 3.81E-03 1.29E-03 Yes

6 IL6R 2 + 3.08E-12 1.37E-04 No

7 GNAS 2 + 9.79E-12 1.79E-05 No

8 GNAI2 2 + 1.53E-10 6.06E-05 No

9 DRD1 2 + 3.56E-09 4.88E-04 No

10 TERT 2 + 9.22E-07 5.48E-06 No

11 S100A6 2 - 1.36E-05 7.83E-05 No

12 FLT1 2 + 2.01E-05 1.63E-04 No

13 CDH1 2 - 3.28E-05 3.64E-04 No

14 MIR516A2 2 + 9.57E-04 8.45E-03 No

15 MIR516A1 2 - 9.57E-04 8.45E-03 No

16 MIF 2 + 9.94E-03 3.60E-03 No

17 VEGFA 1 + 9.58E-10 NA No

18 E2F1 1 + 1.48E-04 NA No

19 MIR576 1 - 4.01E-04 NA No

20 FTO 1 - 3.30E-03 NA No

21 AHSG 1 + 4.74E-03 NA No

22 MIR488 1 - NA 9.72E-06 No

23 CREB1 1 + NA 2.59E-04 No

24 AKT1 1 + NA 2.17E-03 No

25 NOS2 1 + NA 5.91E-03 No

26 TPT1 1 + NA 6.27E-03 No

27 CASP3 1 - NA 6.47E-03 No

28 CCL2 1 NA NA NA Yes

29 CD274 1 NA NA NA Yes

30 IFI44 1 NA NA NA Yes

31 MX2 1 NA NA NA Yes

32 IL1B 1 NA NA NA Yes

33 BMPR2 1 NA NA NA Yes

34 PARP1 1 NA NA NA Yes

35 SERPINF2 1 NA NA NA Yes

All molecules were ranked based on their activity prediction p-values as
well their overlap confidence score. An overlap confidence score of 3
indicates that a specific gene/protein is overlapping between the
biomarker set and 3 other gene sets, while a score of 1 indicates that
gene/protein is overlapping between the biomarker list and one other
gene set.
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revealed a prominent role of interferon signaling in the signaling
pathways impacted by BNT162b2 vaccines.

Supporting evidence
We mined the VAERS database, PubMed using Abstract Sifter, and
the Connectivity Map to gather supporting evidence for the
prioritized hypotheses regarding vaccine-induced menstrual
irregularities and prolactin or HPO mimicking effects.

VAERS database. We searched the VAERS database for vaccine
adverse events that are relevant to menstrual irregularities. First,
we extracted all COVID-19 vaccine adverse events and ranked
them according to their proportions of the overall reported
adverse events for COVID-19 vaccines. VAERS annotates menstrual
irregularity under ‘menstruation irregular’, in addition to using

more specific “symptom” terms, including heavy menstrual
bleeding, dysmenorrhea, intermenstrual bleeding, amenorrhea,
postmenopausal hemorrhage, premenstrual pain, menstrual dis-
comfort, menstruation normal, premenstrual dysphoric disorder,
menstrual cycle management, premenstrual headache, retrograde
menstruation, premenstrual syndrome and menstrual disorder.
Our analysis indicated that none of the menstruation dis-

turbances listed above were among the most frequently reported
adverse events for COVID-19 vaccines that we detailed before12.
An updated adverse event report for COVID-19 vaccines is
provided in Supplementary Table 5. However, some cross-
sectional studies reported high frequencies of these side effects.
There could be many explanations for this discrepancy between
adverse event databases and cross-sectional studies. Women tend
to neglect seeking medical attention for what they perceive as a
mild non-threatening short-term menstruation irregularity53–55. In
fact, women participating in cross-sectional studies are unlikely to
report changes to periods unless specifically asked16.
In fact, mining VAERS data for menstruation irregularities

resulted in 35,386 adverse events that were not restricted to
COVID-19 vaccines (Supplementary Table 6). The top five vaccines
that had the highest share in these events were COVID-19 vaccine
(26,714 events comprising 85.82%), human papillomavirus recom-
binant vaccine (1198 events comprising 3.85%), hepatitis B
vaccine (1013 comprising 3.25%), trivalent influenza virus vaccine
(581 events comprising 1.87%) and the zoster vaccine (566 events
comprising 1.82%). It is noteworthy that all these vaccines are
given later rather than the first few years of life, permitting
adverse event reporting by menstruating women.

PubMed Abstract Sifter. To increase the confidence in the
prioritized causal hits, we examined the relationship(s) between
the prioritized genes and menstruation irregularities in more
depth and complexity using the PubMed Abstract Sifter56. On the
Landscape sheet we built queries that revealed the number of
articles satisfying a variety of queries related to menstrual cycle,
abnormal menstruation, vaccines, and prioritized upstream causal
regulators. These results (Supplementary Table 7) revealed a
sizable publication record for the relationship between menstrua-
tion and genes affected by COVID-19 vaccines (DEGs and/or causal
hubs). The results of two queries consisting of the higher
confidence list of prioritized causal transcription factors, and
biomarkers causal hubs and DEGs are shown in Fig. 6a, b.

The Connectivity Map (CMap). The Connectivity Map analysis
suggests that drugs capable of inducing transcriptomics effects
opposite to those induced by mRNA vaccines could reverse
vaccine side effects57,58. To identify small-molecule drugs that
could prevent or reverse vaccine’s side effects, we ranked all DEGs
in response to vaccination by BNT162b2 according to their
expression levels using log2FC values, to query the Connectivity
Map database59. The CMap query gene signature consisted of the
50 most upregulated genes and the 50 most downregulated
genes in response to vaccination with BNT162b2. Compound hits
that produced opposite transcriptional signatures to the mRNA
vaccine BNT162b2 are listed in Table 4. These compounds can
reverse the transcriptomic signature of the vaccine, which will
prevent or reduce side effects. In this study, we wanted to increase
the confidence in the computational hypotheses derived from the
enrichment and network analyses described earlier.

DISCUSSION
This study describes the first attempt to provide a mechanistic
insight for vaccine-induced menstrual cycle irregularities. Our
approach combined the analysis of vaccine gene expression
profiles with upstream predictions of causal regulatory proteins
and RNAs, and downstream analysis of enriched biological

Fig. 3 Overlapping DEGs, causal upstream hubs and biomarkers.
a Venn diagram showing overlaps between DEGs, predicted causal
upstream regulatory hubs using DEGs in GS1 and GS2, and
menstrual irregularity biomarkers. b Venn diagram showing overlaps
between DEGs, predicted causal upstream regulatory hubs using
DEGs in GS1 and GS2, and prolactin signaling biomarkers.
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pathways to provide a causal mechanistic insight for vaccine-
induced menstrual irregularities.
Our analysis led to the prioritization of topologically significant

genes, such as transcription factors and important enzymes (i.e.,
kinases) that were largely missed in the gene expression profiling
experiment, and therefore were not among the prioritized DEGs.
We used the ‘Causal Reasoning’ methodology to identify

candidate proteins (i.e., hypotheses) in the network that can be
reached through a pre-defined distance (i.e., maximum shortest
path length) from the DEGs. Thus, this analysis was crucial for the
reconstruction networks responsible for vaccine-induced men-
strual irregularities. The top five transcription factors, listed from
highest confidence to lower confidence based on their prediction
p-values, were: IRF1, STAT1, RELA, IRF3 and STAT 2 (Table 1). All

Fig. 4 Interconnectivity between prioritized high confidence transcription factors. a Direct interactions network of five higher confidence
causal transcription factors. b Direct interactions network of five higher confidence causal transcription factors in addition to prolactin (PRL).
c Direct interactions network of 33 causal upstream regulators that are known biomarkers for menstrual disturbances. d Direct interactions
network of 33 causal upstream regulators that are known biomarkers for menstrual disturbances, in addition to prioritized 5 topological genes
and PRL. Thick edges correspond to confidence score � 0.70 (i.e., high confidence score), while the thin edge corresponds to a confidence
level � 0.50 (i.e., low confidence score). Nodes are color-coded using a split pie chart coloring scheme indicating pathway/gene set
contribution to each node from the top 5 most enriched pathways/gene lists. FDR values represent he significance of the predicted pathway.
Generated based on STRING data on 27 September 2022.
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Fig. 5 Prolactin signaling pathway. a Prolactin signaling pathway map. A node (or object) on the map could be a gene, protein or chemical
compound. Query genes from experimental data which intersect with pathway protein or chemical compound. Query genes from
experimental data which intersect with pathway objects are denoted by thermometers. Thermometer 1 represents causal transcription
factors. Thermometer 2 represents DEGs in response to treatment with vaccine, applying thresholds of log2FC ≥ 2.00 or ≤−2.00, and
FDR ≤ 0.05. b Biological processes involved in prolactin signaling pathway. The % refers to the percentage of network objects in the pathway
map. The p-value is the process prediction p-value.
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were predicted to be activated, in response to BNT162b2
vaccination, based on the directionality of differential gene
expression in GS1 and GS2.
IRF1 was ranked first as the highest confidence predicted

activated transcription factor. To assess whether changes in IRF1
activation can affect menstrual cycle, we checked whether IRF1 is
biomarker for “menstrual cycle irregularity” but we didn’t find
evidence to support that. Next, we reviewed the biomedical
literature to search for possible links between IRF1 and the
menstrual cycle. We used the PubMed’s advanced search using
query terms “IRF1” and “menstrual cycle” and found evidence that
IRF1 is upregulated by prolactin during the secretory phase of the
menstrual cycle59,60. Additionally, evidence pointed that IRF1
upregulation in the endometrium was linked to prolactin and is
localized predominantly to the granular epithelial cells59. Network
reconstruction using PLR in addition to seed nodes IRF1, STAT1,
RELA, IRF3 and STAT led to the direct interactions network in
Fig. 3a. Downstream enrichment analysis in biological pathways,
highlighted the prolactin signaling pathway as the most
significantly enriched pathway with the six network seeds
mentioned above.

Thus, upstream causal reasoning followed by downstream
pathways analysis highlighted a putative role for prolactin
signaling in modulating post-COVID-19-vaccine adverse events
on the menstrual cycle. Prolactin is a multi-functional molecule; it
is a transcription factor hormone, secreted from the pituitary
glands, and it regulates diverse biological functions including
female menstruation61–69. For example, high prolactin levels can
interfere with the production of sex hormones including estrogen
and progesterone which can further impact menstruation regula-
tion61–69. In fact, women who experience menstrual cycle
irregularities often have higher prolactin levels than others, a
condition known as hyperprolactinemia47. Hyperprolactinemia, is
the most prevalent endocrine dysfunction of the hypothalamic-
pituitary axis in young females, accompanied with ovulatory
disorder and leading to menstrual irregularities70,71. High levels of
prolactin in the body prevent the release of (luteinizing hormone)
LH and follicle-stimulating hormone (FSH), leading to ovulation
disturbances62,65,69. Symptoms of hyperprolactinemia include long
or irregular cycles, anovulation, amenorrhea, oligomenorrhea,
polycystic ovarian syndrome or amenorrhea72–78. In fact, hyper-
prolactinemia can be caused by some drugs, stress, and some

Fig. 6 Screenshots from PubMed Abstract Sifter. a Landscape sheet of the PubMed Abstract Sifter showing relationships, in the form of
article counts, between biological concepts highlighted in this study. The first column “id” lists the gene symbols of prioritized top five causal
transcription factors. b Landscape sheet of the PubMed Abstract Sifter showing relationships, in the form of article counts, between causal
biological concepts highlighted in this study. The first column “id” lists the gene symbols of prioritized causal genes and vaccine-induced
DEGs that are known as also biomarkers for menstrual cycle according to the CDDI database46.
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conditions like prolactinoma (noncancerous tumor of the pituitary
gland)74,79–81. All these factors were found to cause inconsisten-
cies in menstrual cyclicity51,82–84.
Although we perceive menstrual changes as adverse events,

prolactin-mimicking effects of vaccine are not necessarily a
negative consequence of vaccines. Recently, prolactin has been
suggested as a promising immunomodulator for the treatment of
COVID-1985. However, we caution that prolactin mimicking effects
may worsen auto-immune disease symptoms in patients suffering
from systemic lupus erythematosus (SLE), multiple sclerosis,
rheumatoid arthritis, psoriatic arthritis, and AIDS. Caution should
be also practiced in patients undergoing organ transplantation.
Elevated PRL levels have been reported in the previous condi-
tions86,87. Furthermore, a recent study showed that prolactin
hormones in addition to FSH and LH of healthy vaccinated males
were higher than non-vaccinated males or COVID-19 male
patients, indicating that changes in prolactin signaling are not
limited to females88. Prolactin levels were 27.86 ± 4.35 ng/L in
vaccinated males, 5.35 ± 1.59 ng/L in non-vaccinated males, and
16.65 ± 6.15 ng/L in COVID-19 male patients88.
To identify biomolecules that are implicated in menstrual

changes, or the pathological processes that underlie the observed
vaccine-induced menstrual symptoms, we filtered all predicted
causal molecules and DEGs based on their overlaps with
“menstruation irregularity”/“menstruation abnormality” diagnostic
and prognostic biomarkers found in CDDI (Fig. 2a). We had four
gene lists: 1) all DEGs in GS1 and GS2, 2) causal hubs for DEGs
predicted for GS1, 3) causal hubs predicted for GS2, and 4) known
diagnostic biomarkers for menstrual irregularity. TNF was identi-
fied as a high-confidence hit, i.e., a causal protein leading to the
observed changes in gene expression and the predicted prolactin
mimicking effects of the vaccine. TNF was an overlapping gene
among four gene lists: 1) a DEG (log2FC= 3.07), 2) a causal key
hub considering DEGs in both GS1, 3) a causal hub considering
DEGs in GS2, and 4) a diagnostic biomarker for menstrual
irregularity. Furthermore, our causal reasoning results predicted
TNF-alpha activation in response to vaccination with BNT162b2. It
should be noted that all causal predictions (Supplementary Tables
1 & 2) are based on experimental gene expression data.
Finally, SPIA results combined the enrichment results of DEGs

with the actual amount of perturbation which highlighted the role
of interferons on the signaling pathways influenced by BNT162b2.
In fact, mRNA and vector-based COVID-19 vaccines result in the
formation of neutralizing antibodies and activation of immune
cells via the release of pro-inflammatory markers like cytokines
and interferons89. There is evidence indicating that the treatment
of multiple sclerosis with beta interferons causes menstrual
irregularities associated with increased levels of luteinizing
hormone (LH) and/or hyperprolactinemia90. Furthermore, the

upregulation of interferon-gamma perturbs calcium signaling
pathways which can in turn impact hormonal balance12.
But what is the relationship between prolactin signaling, TNF-

alpha activation and interferons? In fact, TNF-alpha activates the
human prolactin gene promoter via NF-κB signaling91. TNF-alpha
activation also stimulates the hypothalamic-pituitary-adrenal axis
while suppressing the hypothalamic-pituitary-thyroid and gonadal
axes, and growth hormone release92. Menstrual bleeding (menses)
is known to be regulated by hypothalamic and pituitary
hormones, and even the slightest changes in hormone levels,
e.g., in response to medication or stress, can result in menstrual
cycle abnormalities93. There is evidence that TNF-alpha and
interleukin 1 beta (IL-1B), both are upregulated DEGs in this
analysis, exert significant inhibitory effects on the GnRH-LH system
in rats94, which may be the case in humans too. Moreover, the
occurrence of reproductive disorders in poultry is highly
correlated with the HPO axis and neuro–endocrine–immune
network molecules, such as TNF-alpha and interferon-gamma
(IFN-γ, IFNG)95. Thus, integrating enrichment and causal reasoning
results with SPIA findings uncovered causal relationships between
BNT162b2-induced menstrual changes and all the following
pathways: prolactin signaling pathways, TNF-alpha activation,
interferons the hypothalamic-pituitary-gonadal/ovarian/testicular
axis. These results agree with previous studies suggesting that
stabilizing the hypothalamic-pituitary-ovarian (HPO) axis with
combined hormonal contraception reduces the chance of
experiencing vaccine-associated menstrual changes38,96.
Different lines of supporting evidence increased the confidence

in the derived causal hypothesis implicating menstrual changes
with prolactin signaling, TNF-alpha and the HPO axis. First, VAERS
data showed that post COVID-19 menstrual changes occurred in
response all COVID-19 vaccines included in the databases
including mRNA and vector-based vaccines and were not tied to
the vaccine platform. The menstrual changes reported in VAERS
included wide range of symptoms and were not limited to the
length of menstrual cycle or menses period. Secondly, PubMed
Abstract Sifter results highlighted 299,927 articles linking DEG TNF
to any menstrual symptoms and 141 articles linking TNF to
abnormal menses. Other high-confidence causal DEGs were
progesterone receptor (PGR) with 45,560 and 796 articles linking
it to any menstrual symptoms or abnormal menses subsequently,
IL-1B with 56,099 and 43 articles linking it to any menstrual
symptoms or abnormal menses subsequently. Finally, chemoge-
nomics evidence from the CMap highlighted significant links to
the HPO axis per results shown is Table 4.
It should be noted that the transcriptomics perturbations in

response to treatment with BNT162b2 diminished on day 28 after
receiving the second vaccine dose of BNT162b2. This suggests
that vaccine effects on gonadal hormones, for females and males,
and the predicted prolactin-mimicking effects, TNF-alpha

Table 4. Small-molecule drugs and chemical compounds that regulate gene expression in an opposite manner to BNT162b2.

Compound Score Description Links to hypothalamic-pituitary-ovarian function

Droxinostat −94.51 HDAC inhibitor 149

Metyrapone −93.62 Cytochrome P450 inhibitor 150,151

Perospirone −92.07 Dopamine receptor antagonist 152

Nabumetone −88.8 Cyclooxygenase inhibitor 153

Salbutamol −87.35 Adrenergic receptor agonist 154,155

VU-0415374-1 −86.32 Glutamate receptor modulator 156

Bromfenac −83.64 Cyclooxygenase inhibitor 153,157

PF-3845 −82.22 FAAH inhibitor 158

Hexylresorcinol −80.48 Local anesthetic 159

PPT −80.07 Estrogen receptor agonist 160
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activation, and HPO signaling changes, were temporary. However,
we cannot rule out long-term effects without clinical studies
comparing vaccinated and non-vaccinated individuals. Moreover,
because our bioinformatics analysis relied on BNT162b2 tran-
scriptomics data, we emphasize that these findings primarily apply
to the BNT162b2 vaccines. However, data mined from VAERS, and
the biomedical literature indicated that vaccine-induced men-
strual cycle changes were reported for other COVID-19 vaccines
(e.g., mRNA-1273, and Janssen’s) and non-COVID-19 vaccines (e.g.,
HPV and typhoid).
In conclusion, our integrative computational network biology

approach revealed that BNT162b2 can induce transcriptomics
changes which may induce menstrual cycle changes by several
mechanisms including prolactin-mimicking effects resulting from
changes in interferon signaling and associated hormonal imbal-
ance particularly in the HPO axis. This remains a high-confidence
biological hypothesis supported by different lines of computa-
tional evidence derived from transcriptomics studies, causal
reasoning analysis, downstream pathway enrichment results,
and additional supporting evidence from vaccine adverse event
databases (e.g., VAERS) and the biomedical literature. Further
experimental validation is warranted to assess whether post-
vaccine prolactin-mimicking effects are due to increased levels of
prolactin or due to other networking biology events mimicking
prolactinemia. These effects may not be restricted to COVID-19
vaccines and should be assessed for other vaccines as well.
This study sheds the light on post-vaccine menstrual irregularity

by revealing short-term post-COVID-19 vaccine prolactin mimick-
ing effects resulting from the transcriptomics irregularities
induced by COVID-19 vaccines. Most women associate menstrua-
tion irregularities with infertility which is one of the leading causes
of vaccine hesitancy among females97. By providing a mechanistic
insight into post-vaccine menstrual irregularities, this study is
promised to correct misinformation about the relationship
between vaccine-induced period irregularities and infertility. Thus,
it is expected to decrease vaccine hesitancy.
This study establishes a causal relationship between COVID-19

vaccine and menstruation regulation by highlighting perturbed
gene expression or dysregulated transcription of known diag-
nostic or prognostic biomarkers for menstruation and menstrua-
tion irregularities. Additionally, top scoring key hubs provide
valuable hypotheses explaining gene expression and can be
explored further in laboratory tests.
This study explores the causal links between COVID-19 vaccines

and menstruation regulation based on an integrative bioinfor-
matics approach that analyzed vaccine-induced transcriptomics
irregularities. Integrating COVID-19 vaccine transcriptomics data
with menstruation biomarkers, reinforced the selection of
biologically relevant hypotheses from an overwhelming number
of statistically significant hypotheses by increasing the confidence
in computational hypotheses predicted by several methods. The
fact that our computational hypotheses were supported by
multiple lines of evidence is considered a major strength for this
study. In fact, our integrative informatics workflow has several
advantages over relying solely on conventional enrichment
analyses for identifying the biological mechanisms that underlie
vaccine side effects. Our approach integrates hypotheses derived
independently from pathway and network enrichments, causal
reasoning, SPIA, and the CMap to prioritize high confidence
computational hypotheses predicted independently by various
computational approaches and using different data types. The
CMap, for example, is considered a unique chemogenomics
database capable of connecting genes, drugs, and diseases based
on genes expression similarities between polypharmacologic
drugs and studied vaccines. This permits the prediction of vaccine
side effects as well as underling causal mechanisms based on
gene expression similarities with well-studied drugs. Finally,
mining VAERS and PubMed for adverse event reports and

vaccine-relevant data, serves as a validation step for the
computationally-derived hypotheses. Thus, computational
hypotheses prioritized using our integrative informatics approach
are inherently high-confidence hypotheses with potentially
improved clinical outcome.
Conversely, the applied methodologies or public databases

have a few limitations that should be pointed out. First, reports
from VAERS may not be conclusive or sufficient to establish causal
relationships adverse events and specific vaccines. Due to the
voluntary nature of VAERS reporting system, the information
provided about an adverse event can be imperfect, imprecise,
coincidental, or unconfirmed, limiting the scientific use of such
reports11,12. Secondly, bioinformatics techniques relying on gene
expression, pathway over-representation and network biology
have some limitations and biases that we reviewed previously
elsewhere43. Herein, the main limitation for the generalizability of
the bioinformatics results to other COVID-19 vaccines, was the
reliance on transcriptional data for the mRNA COVID-19 vaccine
BNT162b2, which was the only publicly available COVID-19
transcriptomics data in humans at the time of conducting this
research. As a result, our bioinformatics results apply directly to
BNT162b2 or and may be extended to other COVID-19 mRNA
vaccines (e.g., mRNA-1273) since COVID-19 mRNA vaccines share
common features of the nature, strength, and timing of the
immune responses as well as similar vaccine composi-
tions7,8,12,18,44. The dosing regimens of vaccines may affect the
results as well30,89. Our integrative workflow can be used to assess
the safety of other vaccines using their transcriptional signatures
in vaccinated individuals.

METHODS
Systems biology informatics workflow
We have developed a network biology workflow to identify causal
links between COVID-19 Vaccines and menstruation irregularities.
This workflow (Fig. 1) incorporates three major components: (1) a
module for mining and prioritizing gene signatures representative
of a condition or a biological state; (2) a causal reasoning network
module to identify upstream regulators of gene expression and (3)
a pathway enrichment module to understand the biological
processes regulated by DEGs and predicted causal regulators of
gene expression. The resulting hypotheses are then evaluated
based on existing evidence in vaccine reporting system databases
and the biomedical literature.

Vaccine-induced differential gene expression
We searched the gene expression omnibus (GEO)98–101 for
transcriptional studies performed in response to treatment
COVID-19 vaccines and we were able to identify one whole
transcriptomics RNA-seq dataset (GSE169159) for COVID-19
vaccines in response to treatment with BNT162b2 at different
time points. Our transcriptomics data analysis of GSE169159 raw
data indicated that gene expression alterations from baseline
were more prominent on day 22, which is the day after receiving
the vaccine second dose. None of the genes analyzed at other
time points (e.g., day 7, day 21, day, day 22.23, day 28) passed the
applied thresholds for the prioritization of DEGs in this study (i.e.,
log2 fold change (log2FC) of +2 or –2, and false discovery rate
(FDR) � 0.05. Therefore, we relied on differential gene expressions
on day 22 for all our bioinformatics analyses.
Gene expression profiles on day 22 were used to generate two

query gene signatures to study the systems biology effects of
BNT162b2: GS1 and GS2. GS1 consisted of all differentially
expressed genes (DEGs)102–104 that passed our prioritization criteria
for DEGs: 1) log2 FC� 2.00 for differentially upregulated genes, and
�−2.00 for differentially downregulated genes; 2) FDRs � 0.05.
GS2 consisted of all differentially expressed genes (DEGs) that
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passed our prioritization criteria for DEGs: 1) log2FC � 5.00 for
differentially upregulated genes, and �−5.00 for differentially
downregulated genes; 2) FDRs � 0.05. The DEGs used to derive
GS1 and GS2 are provided in Supplementary Table 8.

Upstream transcriptomics analysis
Causal Reasoning45,105 was used to identify upstream regulators
(transcription factors, RNA molecules, kinases, phosphatases, and
others proteins) that could cause/explain the observed post-
vaccine gene expression changes in transcriptomics experiments.
We relied on MetaBase106,107 as an interactions database, and the
causal reasoning algorithm implemented in Clarivate’s Key Path-
way Advisor103,108. This method relies on a directed network
which is annotated with activation and inhibition edges as well as
biological mechanisms (transcription regulation). The significance
of the predictions made by a particular hypothesis is assessed
using a binomial test and calculating p-values as probabilities to
get k successes in n predictions using binomial tests with p-
value= 0.50 according to the following equation:

p-value ¼ n
k

� �
pk ð1� pÞn�k (1)

Here, k is the sum of correct predictions and n is the sum of
correct and incorrect predictions.
Finally, p-values are assigned in the score matrix and

hypotheses above the p-value threshold are filtered out of the
score matrix.

Downstream pathway analysis
Pathway enrichment analyses were conducted in Cytoscape
version 3.9.1109 and MetaCoreTM45 to interpret the consequences
of vaccine-induced differential gene expression on biological
processes. The significance of the enrichment was determined by
calculating hypergeometric p-values110. All terms from the
ontology were ranked based on their calculated p values.
Ontology terms with p-values less than the p-value threshold
0.05 are defined as statistically significant and therefore relevant
to the studied list of genes. All terms from the ontology were
ranked according to their calculated p-values.

Signaling pathway impact analysis (SPIA)
SPIA111,112 was performed to identify the impact of the DEGs on
the activity of the enriched pathway. This method aids in the
identification of the most biologically relevant pathways and
candidate causal genes. Herein, we identified perturbed pathways
in response to vaccination by performing the enrichment analysis
on the union gene list consisting of the experimentally derived
DEGs in response to vaccination with BNT162b2, and the list of key
hubs (e.g., activated, or inhibited proteins) using causal reasoning.

Vaccine adverse events database
Raw data files were downloaded in comma-separated value (CSV)
files from the CDC website106,107. CDC WONDER online search tool
was used to mine VAERS data by vaccine type and symptoms108.
The COVID-19 vaccines included in the databases were: BNT162b2,
mRNA-1273 ’s and Janssen’s113,114.

PubMed Abstract Sifter
The advanced literature retrieval tool PubMed Abstract Sifter was
used to explore relationships between the biological concepts and
molecular concepts that play roles in this research area. The steps
in using the Abstract Sifter are described in the user guide. The
tool and the user guide are available from the US EPA and
downloadable from this webpage: https://comptox.epa.gov/
dashboard/downloads56,115–117.

The Connectivity Map (CMap)
The Connectivity Map analysis suggests that drugs capable of
inducing transcriptomics effects opposite to those induced by
mRNA vaccines could reverse vaccine side effects57,58. To identify
small-molecule drugs that could prevent or reverse vaccine’s side
effects, we ranked all DEGs in response to vaccination by BNT162b2
according to their expression levels using log2FC values, to query
the Connectivity Map database59. In fact, our transcriptomics data
analysis of GSE169159 indicated that gene expression alterations
from baseline were more prominent on day 22, which is the day
after receiving the vaccine second dose. None of the genes
analyzed at other time points passed the applied thresholds for
identifying DEGs (i.e., log2 fold change (log2FC) of +2 or –2, and
false discovery rate (FDR) � 0.05. Therefore, we relied on differential
gene expressions on day 22 for all our bioinformatics analyses.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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