7,267 research outputs found

    MIDAS prototype Multispectral Interactive Digital Analysis System for large area earth resources surveys. Volume 2: Charge coupled device investigation

    Get PDF
    MIDAS is a third-generation, fast, low cost, multispectral recognition system able to keep pace with the large quantity and high rates of data acquisition from large regions with present and projected sensors. MIDAS, for example, can process a complete ERTS frame in forty seconds and provide a color map of sixteen constituent categories in a few minutes. A principal objective of the MIDAS Program is to provide a system well interfaced with the human operator and thus to obtain large overall reductions in turn-around time and significant gains in throughput. The need for advanced onboard spacecraft processing of remotely sensed data is stated and approaches to this problem are described which are feasible through the use of charge coupled devices. Tentative mechanizations for the required processing operations are given in large block form. These initial designs can serve as a guide to circuit/system designers

    An Archaeomagnetic Paleointensity Study of Some Hohokam Potsherds from Snaketown, Arizona

    Get PDF
    A paleointensity study on nine potsherds from the Hohokam Indian site of Snaketown, Arizona is described. The sherds range in age from A.D. 200-1400. Examination of different temperature subintervals from the Thellier-Thellier double heating experiment reveals that conventional statistical measures sometimes can unambiguously determine the best data subset for paleointensity calculations. However, it is often necessary to visually inspect the data and utilize physical insight in determining this data subset. Results suggest that the paleointensity was about 0.94 FO (FO, present intensity ≃ 0.506 oe) at A.D. 200, 0.72 FO at A.D. 600, and 1.2 FO at A.D. 1400. The shape of our curve of paleointensity vs. age is congruent with a curve previously derived from other Snaketown artifacts, but our paleointensities are systematically lower by about 0.15 oe

    Decomposition of stochastic flows with automorphism of subbundles component

    Full text link
    We show that given a GG-structure PP on a differentiable manifold MM, if the group G(M)G(M) of automorphisms of PP is big enough, then there exists the quotient of an stochastic flows phitphi_t by G(M)G(M), in the sense that ϕt=Οt∘ρt\phi_t = \xi_t \circ \rho_t where Οt∈G(M)\xi_t \in G(M), the remainder ρt\rho_t has derivative which is vertical but transversal to the fibre of PP. This geometrical context generalizes previous results where MM is a Riemannian manifold and ϕt\phi_t is decomposed with an isometric component, see Liao \cite{Liao1} and Ruffino \cite{Ruffino}, which in our context corresponds to the particular case of an SO(n)-structure on MM.Comment: To appear in Stochastics and Dynamics, 201

    Near-Infrared Microlensing of Stars by the Super-Massive Black Hole in the Galactic Center

    Full text link
    We investigate microlensing amplification of faint stars in the dense stellar cluster in the Galactic Center (GC) by the super-massive black hole (BH). Such events would appear very close to the position of the radio source SgrA*, which is thought to coincide with the BH, and could be observed during the monitoring of stellar motions in the GC. We use the observed K-band (2.2 um) luminosity function (KLF) in the GC and in Baade's Window, as well as stellar population synthesis computations, to construct KLF models for the inner 300 pc of the Galaxy. These, and the observed dynamical properties of this region, are used to compute the rates of microlensing events, which amplify stars above specified detection thresholds. We present computations of the lensing rates and amplifications as functions of the event durations (weeks to years), for a range of detection thresholds. We find that short events dominate the total rate and that long events tend to have large amplifications. For the current detection limit of K=17 mag, the total microlensing rate is 0.003 1/yr, and the rate of events with durations >1 yr is 0.001 1/yr. Recent GC proper motion studies have revealed the possible presence of one or two variable K-band sources very close to SgrA* (Genzel et al 97; Ghez et al 98). These sources may have attained peak brightnesses of K~15 mag, about 1.5-2 mag above the observational detection limits, and appear to have varied on a timescale of ~1 yr. This behavior is consistent with long-duration microlensing of faint stars by the BH. However, we estimate that the probability that such an event could have been detected during the course of the recent proper motion studies is \~0.5%. A ten-fold improvement in the detection limit and 10 yr of monthly monitoring would increase the total detection probability to ~20%. (Abridged)Comment: 29 p. with 5 figs. To appear in ApJ. Changed to reflect published version. Short discussions of solar metallicity luminosity function and star-star microlensing adde

    Clebsch (String) Parameterization of 3-Vectors and Their Actions

    Get PDF
    We discuss some properties of the intrinsically nonlinear Clebsch decomposition of a vector field into three scalars in d=3. In particular, we note and account for the incompleteness of this parameterization when attempting to use it in variational principles involving Maxwell and Chern-Simons actions. Similarities with string decomposition of metrics and their actions are also pointed out.Comment: 4 pages, LaTeX; email correspondence to [email protected]

    Charge Conjugation from Space-Time Inversion

    Full text link
    We show that the CPT group of the Dirac field emerges naturally from the PT and P (or T) subgroups of the Lorentz group.Comment: 4 pages, no figure

    Local trace formulae and scaling asymptotics in Toeplitz quantization

    Full text link
    A trace formula for Toeplitz operators was proved by Boutet de Monvel and Guillemin in the setting of general Toeplitz structures. Here we give a local version of this result for a class of Toeplitz operators related to continuous groups of symmetries on quantizable compact symplectic manifolds. The local trace formula involves certain scaling asymptotics along the clean fixed locus of the Hamiltonian flow of the symbol, reminiscent of the scaling asymptotics of the equivariant components of the Szeg\"o kernel along the diagonal

    The Ratio of Ortho- to Para-H2 in Photodissociation Regions

    Get PDF
    We discuss the ratio of ortho- to para-H2 in photodissociation regions (PDRs). We draw attention to an apparent confusion in the literature between the ortho-to-para ratio of molecules in FUV-pumped vibrationally excited states, and the H2 ortho-to-para abundance ratio. These ratios are not the same because the process of FUV-pumping of fluorescent H2 emission in PDRs occurs via optically thick absorption lines. Thus, gas with an equilibrium ratio of ortho- to para-H2 equal to 3 will yield FUV-pumped vibrationally excited ortho-to-para ratios smaller than 3, because the ortho-H2 pumping rates are preferentially reduced by optical depth effects. Indeed, if the ortho and para pumping lines are on the ``square root'' part of the curve-of-growth, then the expected ratio of ortho and para vibrational line strengths is the square root of 3, ~ 1.7, close to the typically observed value. Thus, contrary to what has sometimes been stated in the literature, most previous measurements of the ratio of ortho- to para-H2 in vibrationally excited states are entirely consistent with a total ortho-to-para ratio of 3, the equilibrium value for temperatures greater than 200 K. We present an analysis and several detailed models which illustrate the relationship between the total ratios of ortho- to para-H2 and the vibrationally excited ortho-to-para ratios in PDRs. Recent Infrared Space Observatory (ISO) measurements of pure rotational and vibrational H2 emissions from the PDR in the star-forming region S140 provide strong observational support for our conclusions.Comment: 23 pages (including 5 figures), LaTeX, uses aaspp4.sty, accepted for publication in Ap

    Quantum communication using a bounded-size quantum reference frame

    Full text link
    Typical quantum communication schemes are such that to achieve perfect decoding the receiver must share a reference frame with the sender. Indeed, if the receiver only possesses a bounded-size quantum token of the sender's reference frame, then the decoding is imperfect, and we can describe this effect as a noisy quantum channel. We seek here to characterize the performance of such schemes, or equivalently, to determine the effective decoherence induced by having a bounded-size reference frame. We assume that the token is prepared in a special state that has particularly nice group-theoretic properties and that is near-optimal for transmitting information about the sender's frame. We present a decoding operation, which can be proven to be near-optimal in this case, and we demonstrate that there are two distinct ways of implementing it (corresponding to two distinct Kraus decompositions). In one, the receiver measures the orientation of the reference frame token and reorients the system appropriately. In the other, the receiver extracts the encoded information from the virtual subsystems that describe the relational degrees of freedom of the system and token. Finally, we provide explicit characterizations of these decoding schemes when the system is a single qubit and for three standard kinds of reference frame: a phase reference, a Cartesian frame (representing an orthogonal triad of spatial directions), and a reference direction (representing a single spatial direction).Comment: 17 pages, 1 figure, comments welcome; v2 published versio

    2-Vector Spaces and Groupoids

    Full text link
    This paper describes a relationship between essentially finite groupoids and 2-vector spaces. In particular, we show to construct 2-vector spaces of Vect-valued presheaves on such groupoids. We define 2-linear maps corresponding to functors between groupoids in both a covariant and contravariant way, which are ambidextrous adjoints. This is used to construct a representation--a weak functor--from Span(Gpd) (the bicategory of groupoids and spans of groupoids) into 2Vect. In this paper we prove this and give the construction in detail.Comment: 44 pages, 5 figures - v2 adds new theorem, significant changes to proofs, new sectio
    • 

    corecore