5,910 research outputs found

    Reply to ``Comment on `Majoron emitting neutrinoless double beta decay in the electroweak chiral gauge extensions' ''

    Full text link
    We demonstrate that in the process of deducing the constraint on the electroweak mixing angle θW\theta_{W} in our paper, we have indeed been working with three mass scales while implementing (331) model.Comment: Revtex, 3pages, Reply to hep-ph/9902448, Submitted to Phys. Rev.

    Quantum interference oscillations of the superparamagnetic blocking in an Fe8 molecular nanomagnet

    Get PDF
    We show that the dynamic magnetic susceptibility and the superparamagnetic blocking temperature of an Fe8 single molecule magnet oscillate as a function of the magnetic field Hx applied along its hard magnetic axis. These oscillations are associated with quantum interferences, tuned by Hx, between different spin tunneling paths linking two excited magnetic states. The oscillation period is determined by the quantum mixing between the ground S=10 and excited multiplets. These experiments enable us to quantify such mixing. We find that the weight of excited multiplets in the magnetic ground state of Fe8 amounts to approximately 11.6%.Comment: Accepted in Phys. Rev. Let

    Exit times in non-Markovian drifting continuous-time random walk processes

    Get PDF
    By appealing to renewal theory we determine the equations that the mean exit time of a continuous-time random walk with drift satisfies both when the present coincides with a jump instant or when it does not. Particular attention is paid to the corrections ensuing from the non-Markovian nature of the process. We show that when drift and jumps have the same sign the relevant integral equations can be solved in closed form. The case when holding times have the classical Erlang distribution is considered in detail.Comment: 9 pages, 3 color plots, two-column revtex 4; new Appendix and references adde

    Management of Virtual Machines on Globus Grids Using GridWay

    Full text link
    Virtual machines are a promising technology to over-come some of the problems found in current Grid infras-tructures, like heterogeneity, performance partitioning or application isolation. In this work, we present an straight-forward deployment of virtual machines in Globus Grids. This solution is based on standard services and does not re-quire additional middleware to be installed. Also, we assess the suitability of this deployment in the execution of a high throughput scientific application, the XMM-Newton Scien-tific Analysis System

    Remark on the vectorlike nature of the electromagnetism and the electric charge quantization

    Full text link
    In this work we study the structure of the electromagnetic interactions and the electric charge quantization in gauge theories of electroweak interactions based on semi-simple groups. We show that in the standard model of the electroweak interactions the structure of the electromagnetic interactions is strongly correlated to the quantization pattern of the electric charges. We examine these two questions also in all possible chiral bilepton gauge models of the electroweak interactions. In all they we can explain the vectorlike nature of the electromagnetic interactions and the electric charge quantization together demanding nonvanishing fermion masses and the anomaly cancellations.Comment: 17 pages, latex, no figure

    Influence of self-gravity on the runaway instability of black hole-torus systems

    Full text link
    Results from the first fully general relativistic numerical simulations in axisymmetry of a system formed by a black hole surrounded by a self-gravitating torus in equilibrium are presented, aiming to assess the influence of the torus self-gravity on the onset of the runaway instability. We consider several models with varying torus-to-black hole mass ratio and angular momentum distribution orbiting in equilibrium around a non-rotating black hole. The tori are perturbed to induce the mass transfer towards the black hole. Our numerical simulations show that all models exhibit a persistent phase of axisymmetric oscillations around their equilibria for several dynamical timescales without the appearance of the runaway instability, indicating that the self-gravity of the torus does not play a critical role favoring the onset of the instability, at least during the first few dynamical timescales.Comment: To appear on Phys.Rev.Let

    An extreme [O III] emitter at z = 3.2: A low metallicity Lyman continuum source

    Get PDF
    Aims. Cosmic reionization is an important process occurring in the early epochs of the Universe. However, because of observational limitations due to the opacity of the intergalactic medium to Lyman continuum photons, the nature of ionizing sources is still not well constrained. While high-redshift star-forming galaxies are thought to be the main contributors to the ionizing background at z > 6, it is impossible to directly detect their ionizing emission. Therefore, looking at intermediate redshift analogues (z ∼ 2?4) can provide useful hints about cosmic reionization. Methods. We investigate the physical properties of one of the best Lyman continuum emitter candidate at z = 3.212 found in the GOODS-S/CANDELS field with photometric coverage from the U to the MIPS 24 ?m band and VIMOS/VLT and MOSFIRE/Keck spectroscopy. These observations allow us to derive physical properties such as stellar mass, star formation rate, age of the stellar population, dust attenuation, metallicity, and ionization parameter, and to determine how these parameters are related to the Lyman continuum emission. Results. Investigation of the UV spectrum confirms a direct spectroscopic detection of the Lyman continuum emission with S/N > 5. Non-zero Lyaα flux at the systemic redshift and high Lyman-aα ESCape fraction (f(Lyaα) ≥ 0.78) suggest a low H i column density. The weak C and Si low-ionization absorption lines are also consistent with a low covering fraction along the line of sight. The subsolar abundances are consistent with a young and extreme starburst. The [O iii] iiiλλ4959, 5007+Hβ equivalent width (EW) is one of the largest reported for a galaxy at z > 3 (EW([O iii] λλ4959, 5007 + Hβ) ≈1600 Å, rest-frame; 6700 Å observed-frame) and the near-infrared spectrum shows that this is mainly due to an extremely strong [O iii] emission. The large observed [O iii]/[O ii] ratio (>10) and high ionization parameter are consistent with prediction from photoionization models in the case of a density-bounded nebula scenario. Furthermore, the EW([O iiiλλ4959, 5007+Hβ) is comparable to recent measurements reported at z ∼ 7?9, in the reionization epoch. We also investigate the possibility of an AGN contribution to explain the ionizing emission but most of the AGN identification diagnostics suggest that stellar emission dominates instead. Conclusions. This source is currently the first high-z example of a Lyman continuum emitter exhibiting indirect and direct evidences of a Lyman continuum leakage and having physical properties consistent with theoretical expectation from Lyman continuum emission from a density-bounded nebula. A low H i column density, low covering fraction, compact star formation activity, and a possible interaction/merging of two systems may contribute to the Lyman continuum photon leakage. © 2015 ESO.We acknowledge the financial contribution from PRIN-INAF 2012.Peer Reviewe

    Convergence of Ginzburg-Landau functionals in 3-d superconductivity

    Full text link
    In this paper we consider the asymptotic behavior of the Ginzburg- Landau model for superconductivity in 3-d, in various energy regimes. We rigorously derive, through an analysis via {\Gamma}-convergence, a reduced model for the vortex density, and we deduce a curvature equation for the vortex lines. In a companion paper, we describe further applications to superconductivity and superfluidity, such as general expressions for the first critical magnetic field H_{c1}, and the critical angular velocity of rotating Bose-Einstein condensates.Comment: 45 page
    • …
    corecore