5,864 research outputs found
Testing the Disk-Locking Paradigm: An Association Between U-V Excess and Rotation in NGC 2264
We present some results from a UVI photometric study of a field in the young
open cluster NGC 2264 aimed, in part, at testing whether accretion in pre-main
sequence stars is linked to rotation. We confirm that U-V excess is well
correlated with H-alpha equivalent width for the stars in our sample. We show
that for the more massive stars in the cluster sample (roughly 0.4-1.2 M_sun)
there is also a significant association between U-V excess and rotation, in the
sense that slow rotators are more likely to show excess U-band emission and
variability. This constitutes significant new evidence in support of the
disk-locking paradigm.Comment: Accepted by ApJ Letter
Experimental Test bed to De-Risk the Navy Advanced Development Model
This paper presents a reduced scale demonstration test-bed at the University of Texas’ Center for Electromechanics (UT-CEM) which is well equipped to support the development and assessment of the anticipated Navy Advanced Development Model (ADM). The subscale ADM test bed builds on collaborative power management experiments conducted as part of the Swampworks Program under the US/UK Project Arrangement as well as non-military applications. The system includes the required variety of sources, loads, and controllers as well as an Opal-RT digital simulator. The test bed architecture is described and the range of investigations that can be carried out on it is highlighted; results of preliminary system simulations and some initial tests are also provided. Subscale ADM experiments conducted on the UT-CEM microgrid can be an important step in the realization of a full-voltage, full-power ADM three-zone demonstrator, providing a test-bed for components, subsystems, controls, and the overall performance of the Medium Voltage Direct Current (MVDC) ship architecture.Center for Electromechanic
The spectral type of CHS7797 - an intriguing very low mass periodic variable in the Orion Nebula Cluster
We present the spectroscopic characterization of the unusual high-amplitude
very low mass pre-main-sequence periodic variable CHS7797. This study is based
on optical medium-resolution (R=2200) spectroscopy in the 6450-8600 A range,
carried out with GMOS-GEMINI-S in March 2011. Observations of CHS7797 have been
carried out at two distinct phases of the 17.8d period, namely at maximum and
four days before maximum. Four different spectral indices were used for the
spectral classification at these two phases, all of them well-suited for
spectral classification of young and obscured late M dwarfs. In addition, the
gravity-sensitive NaI (8183/8195 A) and KI (7665/7699 A) doublet lines were
used to confirm the young age of CHS7797. From the spectrum obtained at maximum
light we derived a spectral type (SpT) of M6.05, while for the spectrum taken
four days before maximum the derived SpT is M5.75. The derived SpTs confirm
that CHS7797 has a mass in the stellar-substellar boundary mass range. In
addition, the small differences in the derived SpTs at the two observed phases
may provide indirect hints that CHS7797 is a binary system of similar mass
components surrounded by a tilted circumbinary disk, a system similar to KH15D.Comment: 6 pages, accepted for publication A&
Constraints on the Space Density of Methane Dwarfs and the Substellar Mass Function from a Deep Near-Infrared Survey
We report preliminary results of a deep near-infrared search for
methane-absorbing brown dwarfs; almost five years after the discovery of Gl
229b, there are only a few confirmed examples of this type of object. New J
band, wide-field images, combined with pre-existing R band observations, allow
efficient identification of candidates by their extreme (R-J) colours.
Follow-up measurements with custom filters can then confirm objects with
methane absorption. To date, we have surveyed a total of 11.4 square degrees to
J~20.5 and R~25. Follow-up CH_4 filter observations of promising candidates in
1/4 of these fields have turned up no methane absorbing brown dwarfs. With 90%
confidence, this implies that the space density of objects similar to Gl 229b
is less than 0.012 per cubic parsec. These calculations account for the
vertical structure of the Galaxy, which can be important for sensitive
measurements. Combining published theoretical atmospheric models with our
observations sets an upper limit of alpha <= 0.8 for the exponent of the
initial mass function power law in this domain.Comment: 11 pages + 2 figures To be published in Astrophysical Journal Letter
The matrix factorisations of the D-model
The fundamental matrix factorisations of the D-model superpotential are found
and identified with the boundary states of the corresponding conformal field
theory. The analysis is performed for both GSO-projections. We also comment on
the relation of this analysis to the theory of surface singularities and their
orbifold description.Comment: 23 pages, LaTe
D-branes in Toroidal Orbifolds and Mirror Symmetry
We study D-branes extended in T^2/Z_4 using the mirror description as a
tensor product of minimal models. We describe branes in the mirror both as
boundary states in minimal models and as matrix factorizations in the
corresponding Landau-Ginzburg model. We isolate a minimal set of branes and
give a geometric interpretation of these as D1-branes constrained to the
orbifold fixed points. This picture is supported both by spacetime arguments
and by the explicit construction of the boundary states, adapting the known
results for rational boundary states in the minimal models. Similar techniques
apply to a larger class of toroidal orbifolds.Comment: 30 pages, 2 figure
An unusual very low-mass high-amplitude pre-main sequence periodic variable
We have investigated the nature of the variability of CHS7797, an unusual
periodic variable in the Orion Nebula Cluster. An extensive I-band photometric
data set of CHS7797 was compiled between 2004-2010 using various telescopes.
Further optical data have been collected in R and z' bands. In addition,
simultaneous observations of the ONC region including CHS7797 were performed in
the I, J, Ks and IRAC [3.6] and [4.5] bands over a time interval of about 40d.
CHS7797 shows an unusual large-amplitude variation of about 1.7 mag in the R,
I, and z' bands with a period 17.786. The amplitude of the brightness
modulation decreases only slightly at longer wavelengths. The star is faint
during 2/3 of the period and the shape of the phased light-curves for seven
different observing seasons shows minor changes and small-amplitude variations.
Interestingly, there are no significant colour-flux correlations for
wavelengths smaller than 2microns, while the object becomes redder when fainter
at longer wavelengths. CHS7797 has a spectral type of M6 and an estimated mass
between 0.04-0.1Msun. The analysis of the data suggests that the periodic
variability of CHS7797 is most probably caused by an orbital motion.
Variability as a result of rotational brightness modulation by spots is
excluded by the lack of any color-brightness correlation in the optical. The
latter indicates that CHS7797 is most probably occulted by circumstellar matter
in which grains have grown from typical 0.1 microns to 1-2 micron sizes. We
discuss two possible scenarios in which CHS7797 is periodically eclipsed by
structures in a disc, namely that CHS7797 is a single object with a
circumstellar disc, or that CHS7797 is a binary system, similar to KH15D, in
which an inclined circumbinary disc is responsible of the variability. Possible
reasons for the typical 0.3mag variations in I-band at a given phase are
discussed.Comment: 11 pages, 9 figures, accepted for publication A&
Rotational modulation of X-ray emission in Orion Nebula young stars
We investigate the spatial distribution of X-ray emitting plasma in a sample
of young Orion Nebula Cluster stars by modulation of their X-ray light-curves
due to stellar rotation. The study, part of the Chandra Orion Ultradeep Project
(COUP), is made possible by the exceptional length of the observation: 10 days
of ACIS integration during a time span of 13 days, yielding a total of 1616
detected sources in the 17x17 arcmin field of view. We here focus on a
subsample of 233 X-ray-bright stars with known rotational periods. We search
for X-ray modulation using the Lomb Normalized Periodogram method.
X-ray modulation related to the rotation period is detected in at least 23
stars with periods between 2 and 12 days and relative amplitudes ranging from
20% to 70%. In 16 cases, the X-ray modulation period is similar to the stellar
rotation period while in seven cases it is about half that value, possibly due
to the presence of X-ray emitting structures at opposite stellar longitudes.
These results constitute the largest sample of low mass stars in which X-ray
rotational modulation has been observed. The detection of rotational modulation
indicates that the X-ray emitting regions are distributed inhomogeneneously in
longitude and do not extend to distances significantly larger than the stellar
radius. Modulation is observed in stars with saturated activity levels
(L_X/L_bol ~ 10^(-3)) showing that saturation is not due to the filling of the
stellar surface with X-ray emitting regions.Comment: 41 pages, 15 figures, ApJS in press. Figure 15 (34 panels) is an
on-line only figure and is not included. A pdf file which includes figure 15
as well as full resolution versions of figure 10 and 11 is available at:
http://www.astropa.unipa.it/~ettoref/COUP_RotMod.pd
First astronomical detection of the CF+ ion
We report the first astronomical detection of the CF+ (fluoromethylidynium)
ion obtained by recent observations of its J = 1 - 0 (102.6 GHz), J = 2 - 1
(205.2 GHz), and J = 3 - 2 (307.7 GHz) pure rotational emissions toward the
Orion Bar. Our search for CF+, carried out using the IRAM 30m and APEX 12m
telescopes, was motivated by recent theoretical models that predict CF+
abundances of a few x E-10 in UV-irradiated molecular regions where C+ is
present. The measurements confirm the predictions. They provide support for our
current theories of interstellar fluorine chemistry, which suggest that
hydrogen fluoride should be ubiquitous in interstellar gas clouds.Comment: 2 pages, 1 figure (uses iaus.sty), to appear in IAU Symposium No.
231, Astrochemistry - Recent Successes and Current Challenges, eds. D. C.
Lis, G. A. Blake & E. Herbst (Cambridge Univ. Press
Development of Readout Interconnections for the Si-W Calorimeter of SiD
The SiD collaboration is developing a Si-W sampling electromagnetic
calorimeter, with anticipated application for the International Linear
Collider. Assembling the modules for such a detector will involve special
bonding technologies for the interconnections, especially for attaching a
silicon detector wafer to a flex cable readout bus. We review the interconnect
technologies involved, including oxidation removal processes, pad surface
preparation, solder ball selection and placement, and bond quality assurance.
Our results show that solder ball bonding is a promising technique for the Si-W
ECAL, and unresolved issues are being addressed.Comment: 8 pages + title, 6 figure
- …
