129 research outputs found

    Efficient reconstruction of CMSSM parameters from LHC data - A case study

    Get PDF
    We present an efficient method of reconstructing the parameters of the Constrained MSSM from assumed future LHC data, applied both on their own right and in combination with the cosmological determination of the relic dark matter abundance. Focusing on the ATLAS SU3 benchmark point, we demonstrate that our simple Gaussian approximation can recover the values of its parameters remarkably well. We examine two popular non-informative priors and obtain very similar results, although when we use an informative, naturalness-motivated prior, we find some sizeable differences. We show that a further strong improvement in reconstructing the SU3 parameters can by achieved by applying additional information about the relic abundance at the level of WMAP accuracy, although the expected data from Planck will have only a very limited additional impact. Further external data may be required to break some remaining degeneracies. We argue that the method presented here is applicable to a wide class of low-energy effective supersymmetric models, as it does not require to deal with purely experimental issues, eg, detector performance, and has the additional advantages of computational efficiency. Furthermore, our approach allows one to distinguish the effect of the model's internal structure and of the external data on the final parameters constraints.Comment: 23 pages, 10 figures - moderate revision: includes naturalness prior. Matches published versio

    Constraints on a mixed inflaton and curvaton scenario for the generation of the curvature perturbation

    Full text link
    We consider a supersymmetric grand unified model which naturally solves the strong CP and mu problems via a Peccei-Quinn symmetry and leads to the standard realization of hybrid inflation. We show that the Peccei-Quinn field of this model can act as curvaton. In contrast to the standard curvaton hypothesis, both the inflaton and the curvaton contribute to the total curvature perturbation. The model predicts an isocurvature perturbation too which has mixed correlation with the adiabatic one. The cold dark matter of the universe is mostly constituted by axions plus a small amount of lightest sparticles. The predictions of the model are confronted with the Wilkinson microwave anisotropy probe and other cosmic microwave background radiation data. We analyze two representative choices of parameters and derive bounds on the curvaton contribution to the adiabatic perturbation. We find that, for the choice which provides the best fitting of the data, the curvaton contribution to the adiabatic amplitude must be smaller than about 67% (at 95% confidence level). The best-fit power spectra are dominated by the adiabatic part of the inflaton contribution. We use Bayesian model comparison to show that this choice of parameters is disfavored with respect to the pure inflaton scale-invariant case with odds of 50 to 1. For the second choice of parameters, the adiabatic mode is dominated by the curvaton, but this choice is strongly disfavored relative to the pure inflaton scale-invariant case (with odds of 10^7 to 1). We conclude that in the present framework the perturbations must be dominated by the adiabatic component from the inflaton.Comment: 27 pages including 16 figures, uses Revte

    Dark Matter, Sparticle Spectroscopy and Muon (g2)(g-2) in SU(4)c×SU(2)L×SU(2)RSU(4)_c \times SU(2)_L \times SU(2)_R

    Get PDF
    We explore the sparticle mass spectra including LSP dark matter within the framework of supersymmetric SU(4)c×SU(2)L×SU(2)RSU(4)_c \times SU(2)_L \times SU(2)_R (422) models, taking into account the constraints from extensive LHC and cold dark matter searches. The soft supersymmetry-breaking parameters at MGUTM_{GUT} can be non-universal, but consistent with the 422 symmetry. We identify a variety of coannihilation scenarios compatible with LSP dark matter, and study the implications for future supersymmetry searches and the ongoing muon g-2 experiment.Comment: 21 pages, 8 fig

    A Bayesian Approach to the Constrained MSMM

    Get PDF
    We present a newanalysis of the Constrained MSSM in terms of Bayesian statistics. We illustrate our results with the light Higgs boson whose inferred mass range one should be able to exclude at the Tevatron with high con dence

    A resonance without resonance: scrutinizing the diphoton excess at 750 GeV

    Full text link
    Motivated by the recent diphoton excesses reported by both ATLAS and CMS collaborations, we suggest that a new heavy spinless particle is produced in gluon fusion at the LHC and decays to a couple of lighter pseudoscalars which then decay to photons. The new resonances could arise from a new strongly interacting sector and couple to Standard Model gauge bosons only via the corresponding Wess-Zumino-Witten anomaly. We present a detailed recast of the newest 13 TeV data from ATLAS and CMS together with the 8 TeV data to scan the consistency of the parameter space for those resonances.Comment: 8 pages, 4 figures, extended discussion of underlying models, new plots with varying mass of the heavy scalar, to appear in PL

    A Coverage Study of the CMSSM Based on ATLAS Sensitivity Using Fast Neural Networks Techniques

    Get PDF
    We assess the coverage properties of confidence and credible intervals on the CMSSM parameter space inferred from a Bayesian posterior and the profile likelihood based on an ATLAS sensitivity study. In order to make those calculations feasible, we introduce a new method based on neural networks to approximate the mapping between CMSSM parameters and weak-scale particle masses. Our method reduces the computational effort needed to sample the CMSSM parameter space by a factor of ~ 10^4 with respect to conventional techniques. We find that both the Bayesian posterior and the profile likelihood intervals can significantly over-cover and identify the origin of this effect to physical boundaries in the parameter space. Finally, we point out that the effects intrinsic to the statistical procedure are conflated with simplifications to the likelihood functions from the experiments themselves.Comment: Further checks about accuracy of neural network approximation, fixed typos, added refs. Main results unchanged. Matches version accepted by JHE

    The impact of priors and observables on parameter inferences in the Constrained MSSM

    Get PDF
    We use a newly released version of the SuperBayeS code to analyze the impact of the choice of priors and the influence of various constraints on the statistical conclusions for the preferred values of the parameters of the Constrained MSSM. We assess the effect in a Bayesian framework and compare it with an alternative likelihood-based measure of a profile likelihood. We employ a new scanning algorithm (MultiNest) which increases the computational efficiency by a factor ~200 with respect to previously used techniques. We demonstrate that the currently available data are not yet sufficiently constraining to allow one to determine the preferred values of CMSSM parameters in a way that is completely independent of the choice of priors and statistical measures. While b->s gamma generally favors large m_0, this is in some contrast with the preference for low values of m_0 and m_1/2 that is almost entirely a consequence of a combination of prior effects and a single constraint coming from the anomalous magnetic moment of the muon, which remains somewhat controversial. Using an information-theoretical measure, we find that the cosmological dark matter abundance determination provides at least 80% of the total constraining power of all available observables. Despite the remaining uncertainties, prospects for direct detection in the CMSSM remain excellent, with the spin-independent neutralino-proton cross section almost guaranteed above sigma_SI ~ 10^{-10} pb, independently of the choice of priors or statistics. Likewise, gluino and lightest Higgs discovery at the LHC remain highly encouraging. While in this work we have used the CMSSM as particle physics model, our formalism and scanning technique can be readily applied to a wider class of models with several free parameters.Comment: Minor changes, extended discussion of profile likelihood. Matches JHEP accepted version. SuperBayeS code with MultiNest algorithm available at http://www.superbayes.or

    Higher order corrections and unification in the minimal supersymmetric standard model: SOFTSUSY3.5

    Get PDF
    We explore the effects of three-loop minimal supersymmetric standard model renormalisation group equation terms and some leading two-loopthreshold corrections on gauge and Yukawa unification: each being one loop higher order than current public spectrum calculators. We also explore the effect of the higher order terms (often 2-3 GeV) on the lightest CP even Higgs mass prediction. We illustrate our results in the constrained minimal supersymmetric standard model. Neglecting threshold corrections at the grand unified scale, the discrepancy between the unification scale αs\alpha_s and the other two unified gauge couplings changes by 0.1%\% due to the higher order corrections and the difference between unification scale bottom-tau Yukawa couplings neglecting unification scale threshold corrections changes by up to 1%\%. The difference between unification scale bottom and top Yukawa couplings changes by a few percent. Differences due to the higher order corrections also give an estimate of the size of theoretical uncertainties in the minimal supersymmetric standard model spectrum. We use these to provide estimates of theoretical uncertainties in predictions of the dark matter relic density (which can be of order one due to its strong dependence on sparticle masses) and the LHC sparticle production cross-section (often around 30%\%). The additional higher order corrections have been incorporated into SOFTSUSY, and we provide details on how to compile and use the program. We also provide a summary of the approximations used in the higher order corrections.This work has been partially supported by STFC. R. RdA, is supported by the Ramón y Cajal program of the Spanish MICINN and also thanks the support of the Spanish MICINN’s Consolider-Ingenio 2010 Programme under the grant MULTIDARK CSD2209-00064, the Invisibles European ITN project (FP7-PEOPLE-2011-ITN, PITN-GA-2011-289442-INVISIBLES) and the “SOM Sabor y origen de la Materia” (FPA2011-29678) and the “Fenomenologia y Cosmologia de la Fisica mas alla del Modelo Estandar e lmplicaciones Experimentales en la era del LHC” (FPA2010-17747) MEC projects. BCA thanks the Cambridge SUSY working group for useful discussions. We thank P. Slavich for helpful communication and suggestions and D. Kunz and P. Kant for communications regarding the H3M package. AVB is immensely grateful to A. Sheplyakov for providing a program for dealing with GiNaC archives. The work of AVB is supported by the RFBR grants 12-12-02-00412-a, 14-02-00494-a, and the Russian President Grant MK-1001.2014.2.This is the author accepted manuscript. The final version is available from Elsevier via http://dx.doi.org/10.1016/j.cpc.2014.12.00
    corecore